Abstract

We have performed studies and comparative analysis of the biosynthesis characteristics of intracellular recombinant enzyme, such as hexahistidine-containing organophosphorus hydrolase (His6-OPH) in Escherichia coli SG13009[pREP4] cells when various perfluorocarbon compounds (PFC) were introduced into the medium for cell cultivation. The PFC were found to facilitate the biosynthesis of His6-OPH: increased levels of the total OPH-activity (up to 37%) were measured upon introduction of 1,1,1,2,2,3,3,4,4,5,5,6,6,6-tetradecafluorohexane (PFH) and 4,7,10,13,16,19,22,25,28,31-decaoxaperfluoro-5,8,11,14,17,18,21,24,27,30-decamethyl tetratriacontane (Polyether II) into culture medium. We have demonstrated the possibility of effective and multiple (at least five-fold) use of PFH for biosynthesis of intracellular recombinant protein His6-OPH, which catalyzes the hydrolysis of organophosphorus pesticides (OP), is widely used in agriculture and can be applied as new antidote for OP-detoxification in vivo. The multiple use of PFH was achieved through recycling of this substance: sediment of Escherichia coli SG13009[pREP4] cell biomass was collected at the end of each culture growing step and disintegrated with ultrasound, and obtained residue containing almost all of the initially introduced PFC was then added to the medium at the start of the following culture growing step.

Details

Title
Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function
Author
Senko, Olga; Stepanov, Nikolay; Tyutyunov, Andrey; Sterlin, Sergey; Grinberg, Vitaly; Makhlis, Tatiana; Efremenko, Elena
First page
1305
Publication year
2017
Publication date
2017
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424158598
Copyright
© 2017. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.