Full text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low-cost particle sensors are now used worldwide to monitor outdoor air quality. However, they have only been in wide use for a few years. Are they reliable? Does their performance deteriorate over time? Are the algorithms for calculating PM2.5 concentrations provided by the sensor manufacturers accurate? We investigate these questions using continuous measurements of four PurpleAir monitors (8 sensors) under normal conditions inside and outside a home for 1.5–3 years. A recently developed algorithm (called ALT-CF3) is compared to the two existing algorithms (CF1 and CF_ATM) provided by the Plantower manufacturer of the PMS 5003 sensors used in PurpleAir PA-II monitors. Results. The Plantower CF1 algorithm lost 25–50% of all indoor data due in part to the practice of assigning zero to all concentrations below a threshold. None of these data were lost using the ALT-CF3 algorithm. Approximately 92% of all data showed precision better than 20% using the ALT-CF3 algorithm, but only approximately 45–75% of data achieved that level using the Plantower CF1 algorithm. The limits of detection (LODs) using the ALT-CF3 algorithm were mostly under 1 µg/m3, compared to approximately 3–10 µg/m3 using the Plantower CF1 algorithm. The percentage of observations exceeding the LOD was 53–92% for the ALT-CF3 algorithm, but only 16–44% for the Plantower CF1 algorithm. At the low indoor PM2.5 concentrations found in many homes, the Plantower algorithms appear poorly suited.

Details

Title
Intercomparison of PurpleAir Sensor Performance over Three Years Indoors and Outdoors at a Home: Bias, Precision, and Limit of Detection Using an Improved Algorithm for Calculating PM2.5
Author
Wallace, Lance  VIAFID ORCID Logo 
First page
2755
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649063576
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.