Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Tumor cells display important plasticity potential. Notably, tumor cells have the ability to change toward immature cells called cancer stem cells under the influence of the tumor environment. Importantly, cancer stem cells are a small subset of relatively quiescent cells that, unlike rapidly dividing differentiated tumor cells, escape standard chemotherapies, causing relapse or recurrence of cancer. Interestingly, these cells adopt a specific metabolism. Most often, they mainly rely on glucose uptake and metabolism to sustain their energy needs. This metabolic reprogramming is set off by environmental factors such as pro-inflammatory signals or catecholamine hormones (epinephrine, norepinephrine). A better understanding of this process could provide opportunities to kill cancer stem cells. Indeed, it would become possible to develop drugs that act specifically on metabolic pathways used by these cells. These new drugs could be used to strengthen the effects of current chemotherapies and overcome cancers with poor prognoses.

Abstract

Tumor cells display important plasticity potential, which contributes to intratumoral heterogeneity. Notably, tumor cells have the ability to retrodifferentiate toward immature states under the influence of their microenvironment. Importantly, this phenotypical conversion is paralleled by a metabolic rewiring, and according to the metabostemness theory, metabolic reprogramming represents the first step of epithelial-to-mesenchymal transition (EMT) and acquisition of stemness features. Most cancer stem cells (CSC) adopt a glycolytic phenotype even though cells retain functional mitochondria. Such adaptation is suggested to reduce the production of reactive oxygen species (ROS), protecting CSC from detrimental effects of ROS. CSC may also rely on glutaminolysis or fatty acid metabolism to sustain their energy needs. Besides pro-inflammatory cytokines that are well-known to initiate the retrodifferentiation process, the release of catecholamines in the microenvironment of the tumor can modulate both EMT and metabolic changes in cancer cells through the activation of EMT transcription factors (ZEB1, Snail, or Slug (SNAI2)). Importantly, the acquisition of stem cell properties favors the resistance to standard care chemotherapies. Hence, a better understanding of this process could pave the way for the development of therapies targeting CSC metabolism, providing new strategies to eradicate the whole tumor mass in cancers with unmet needs.

Details

Title
Interplay between Metabolism Reprogramming and Epithelial-to-Mesenchymal Transition in Cancer Stem Cells
Author
Yoann, Daniel 1   VIAFID ORCID Logo  ; Lelou, Elise 1   VIAFID ORCID Logo  ; Aninat, Caroline 1 ; Corlu, Anne 1   VIAFID ORCID Logo  ; Cabillic, Florian 2 

 INSERM, Université Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; [email protected] (Y.D.); [email protected] (E.L.); [email protected] (C.A.); [email protected] (F.C.) 
 INSERM, Université Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; [email protected] (Y.D.); [email protected] (E.L.); [email protected] (C.A.); [email protected] (F.C.); Laboratoire de Cytogénétique et Biologie Cellulaire, CHU Rennes, F-35000 Rennes, France 
First page
1973
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547628589
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.