It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
De-i-fuzzification is a process of converting the intuitionistic fuzzy set into a fuzzy set. It becomes one of the core procedures in fuzzy time series forecasting model based on the intuitionistic fuzzy set. In this paper, we propose a fuzzy time series forecasting model based on intuitionistic fuzzy set via de-i-fuzzification. The de-i-fuzzification approach used is assigning the hesitancy degree to the major grade. The data are partitioned into a few intervals using the frequency density-based method. The data in the fuzzy set form is then transformed into an intuitionistic fuzzy set using the definition of intuitionistic fuzzy set. The arithmetic rules based on centroid defuzzification is used to obtain the forecasted output. The model is implemented on the data of student enrolment at the University of Alabama. The results are then compared to forecasting method using classical fuzzy set and similar de-i-fuzzification approach using max-min operation. The proposed method outperforms the other two methods, thus supports the fact that intuitionistic fuzzy set is a generalization of a classical fuzzy set and gives better performance in forecasting.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Jengka, Pahang, Malaysia