Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cement cracks are one of the most common failures in oil and gas wells. Cracks can reduce cement strength, resulting in a loss of zonal isolation and fluid leak. Placement of gels of nanoparticles (NPs) in the cracks is considered as a promising solution to solve the problem. It is highly desirable to know if the flow behavior of the NPs solutions is predictable when they are squeezed into the cracks. Experimental tests were performed in this study to investigate the flow behavior of nano-silica solutions in ducts of cross-sections of rectangular shape. The linear relationship between flow rate and pressure gradient and the calculated Reynolds number values suggests laminar flow in the ducts. However, the Hagen–Poiseuille correlation for laminar flow does not describe the flow behavior of the nano-silica solution. The classic hydraulic model with hydraulic diameter describes the nano-silica flow behavior with an average error of 12.38%. The cause of discrepancies between the flow models and the measured data is not known. It can be attributed to the NPs–NPs frictions and NPs–wall frictions in the rough ducts that were not considered in the flow models.

Details

Title
Investigation of Nano-Silica Solution Flow through Cement Cracks
Author
Nguyen, Vu  VIAFID ORCID Logo  ; Olatunji Olayiwola; Liu, Ning; Guo, Boyun  VIAFID ORCID Logo 
First page
577
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761219738
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.