Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this investigation, spherical Al2O3 magnetic abrasive particles (MAPs) were used to polish the inner surface of ultra-fine long cobalt–chromium alloy cardiovascular stent tubes. The magnetic abrasives were prepared by combining plasma molten metal powder and hard abrasives, and the magnetic abrasives prepared by this new method are characterized by high sphericity, narrow particle size distribution range, long life, and good economic value. Firstly, the spherical Al2O3 magnetic abrasives were prepared by the new method; secondly, the polishing machine for the inner surface of the ultra-fine long cardiovascular stent tubes was developed; finally, the influence laws of spindle speed, magnetic pole speed, MAP filling quantities, the magnetic pole gap on the surface roughness (Ra), and the removal thickness (RT) of tubes were investigated. The results showed that the prepared Al2O3 magnetic abrasives were spherical in shape, and their superficial layer was tightly bound with Al2O3 hard abrasives with sharp cutting; the use of spherical Al2O3 magnetic abrasives could achieve the polishing of the inner surface of ultra-fine cobalt–chromium alloy cardiovascular bracket tubes, and after processing, the inner surface roughness (Ra) of the tubes decreased from 0.337 µm to 0.09 µm and had an RT of 5.106 µm.

Details

Title
Investigation of Spherical Al2O3 Magnetic Abrasive Prepared by Novel Method for Finishing of the Inner Surface of Cobalt–Chromium Alloy Cardiovascular Stents Tube
Author
Liu, Guangxin; Zhao, Yugang; Li, Zhihao; Hanlin, Yu; Cao, Chen; Meng, Jianbing  VIAFID ORCID Logo  ; Zhang, Haiyun; Zhao, Chuang
First page
621
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791678153
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.