Full text

Turn on search term navigation

© 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

We previously identified the tumor suppressor gene TOB1 as related to gastric cancer. The purpose of this study was to explore whether TOB1 induces autophagy through the AKT/mTOR signaling pathway in gastric cancer.

Methods

Western blotting was used to detect the protein levels of TOB1, LC3, AKT, mTOR, phosphorylated (p) AKT, and p-mTOR. A double fluorescent GFP-RFP-LC3 fusion protein was used to trace autophagy by laser confocal microscopy. Autophagosomes were observed by transmission electron microscopy.

Results

The conversion of LC3-I to LC3-II and the LC3-II/LC3-I ratio were significantly increased in AGS cells overexpressing TOB1 compared with control cells. Fluorescence imaging showed LC3 puncta at 48 h, and these puncta increased significantly at 72 h after TOB1 transfection compared with control tumor cells. The presence of autophagosomes in AGS cells was observed at 72 h after TOB1 transfection by transmission electron microscopy, and no autophagosomes were found in the control cells. Moreover, the levels of p-AKT and p -mTOR were lower in AGS cells than in control cancer cells.

Conclusion

Our results provide novel insight that TOB1 might suppress gastric cancer by inducing autophagy, possibly through decreasing phosphorylation and the subsequent activation of the AKT/mTOR signaling pathway.

Details

Title
Involvement of TOB1 on autophagy in gastric cancer AGS cells via decreasing the activation of AKT/mTOR signaling pathway
Author
Wang, Dong; Li, Yunlong; Sui, Shuning; Cai, Mengdi; Dong, Kexian; Wang, Ping; Liang, Xiao; Fu, Songbin; Yu, Jingcui
Publication year
2022
Publication date
Feb 4, 2022
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2625405831
Copyright
© 2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.