Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lithium tetrakis(4-boronatoaryl)borates were subjected to polycondensation reactions with selected polyhydroxyl monomers such as 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7-tetrahydroxy-9,10-dimethylanthracene (THDMA). Obtained boronate-type ionic porous polymers TAB1–4 were characterized by PXRD, 6Li and 11B magic-angle spinning nuclear magnetic resonance (MAS NMR), FT-IR, SEM, and TGA. They exhibit relatively good sorption of H2 (up to 75 cm3/g STP), whereas N2 uptake at 77 K for lower pressure range is relatively poor (up to 50 cm3/g STP below P/P0 = 0.8). In addition, the effect of elongation of aryl arms in the tetraarylborate core on the materials’ properties was studied. Thus, it was found that replacement of the 4-boronatophenyl with 4-boronatobiphenylyl group has a negative impact on the sorption characteristics.

Details

Title
Ionic Porous Organic Polymers Based on Functionalized Tetraarylborates
Author
Tomaszewski, Patryk  VIAFID ORCID Logo  ; Wiszniewski, Marcin; Gontarczyk, Krzysztof; Wieciński, Piotr; Durka, Krzysztof  VIAFID ORCID Logo 
First page
1070
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2557220221
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.