Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Endometritis is a common and important reproductive disease of domestic animals, leading to repeated infertility, abortion, and ovarian dysfunction, which affects the reproductive rate and production performance of female domestic animals, and causes serious financial loss to farmers. Infection with Gram-negative bacteria, the release of LPS and activation of the TLR4/NF-κB signaling pathway are the principal factors responsible for the disease. However, the mechanism of the interaction between endometrial immunity and bacterial infection is not entirely clear. Ubiquitin-like protein ISG15 can regulate the TLR4/NF-κB signaling pathway via the ISGylation modification system, which modulates the inflammatory response. In the present study, we found that ISG15 proteins were mainly located in the cytoplasm of goat endometrial epithelial cells (gEECs) and that the expression of key genes and proteins of ISGylation increased in LPS-induce gEECs. Overexpression and silencing of the ISG15 gene demonstrated that ISGylation inhibited an LPS-induced inflammatory response via the TLR4/NF-κB signaling pathway in gEECs. Here, we provide the experimental basis for further exploration of the role of the ISGylation modification system in the inflammatory response of endometrium and a potential method for the treatment of endometritis.

Abstract

Endometritis is a common and important reproductive disease of domestic animals. The principal factors responsible for the disease are infection with Gram-negative bacteria, the release of Lipopolysaccharides (LPS) and activation of the TLR4/NF-κB signaling pathway. However, we do not fully understand the interaction between endometrial immunity and bacterial infection in the disease etiology. The ubiquitin-like protein ISG15 can regulate the TLR4/NF-κB signaling pathway via the ISGylation modification system, modulating the inflammatory response. In the present study, we found that ISG15 protein was expressed mainly in the cytoplasm of goat endometrial epithelial cells (gEECs) and that the expression of key genes and proteins of ISGylation increased in LPS-induced gEECs. Overexpression and silencing of the ISG15 gene demonstrated that ISGylation inhibited an LPS-induced inflammatory response via the TLR4/NF-κB signaling pathway in gEECs. Here, we provide the experimental basis for further exploration of the role of the ISGylation modification system in the inflammatory response of endometrium and a potential method for the treatment of endometritis.

Details

Title
ISGylation Inhibits an LPS-Induced Inflammatory Response via the TLR4/NF-κB Signaling Pathway in Goat Endometrial Epithelial Cells
Author
Xiao, Jinbang 1 ; Li, Shanshan 1 ; Zhang, Ruixue 1 ; Wang, Zongjie 1 ; Zhang, Xinyan 1 ; Wang, Aihua 1 ; Jin, Yaping 1 ; Lin, Pengfei 1   VIAFID ORCID Logo 

 College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; [email protected] (J.X.); [email protected] (S.L.); [email protected] (R.Z.); [email protected] (Z.W.); [email protected] (X.Z.); [email protected] (A.W.); Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China 
First page
2593
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576376643
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.