Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon fiber reinforced polymer (CFRP) is widely used in the lightweight design of high-speed trains due to its high specific strength. In order to further reduce the weight of the high-speed train body, it is necessary to study the joining process and fatigue properties of CFRP/aluminum alloys (CFRP/Al) structure. In this work, the CFRP plate and 5083P-O aluminum plate were successfully connected by an induction brazing method. The optimum parameters of induction brazing were determined to be an induction temperature of 290 °C, a normal pressure of 200 kPa, and a holding time of 5 s. After the 5083 plate was pre-anodized, the tensile strength of the CFRP/5083 joint reached a maximum value of 176.5 MPa. The anodization process introduced more surface micro-structures on the 5083 plate, leading to a better wetting behavior between CFRP and oxide film. Meanwhile, a new chemical bond, Al-O-C, was also formed at the interface of the CFRP/5083 joint. The fatigue limit of the CFRP/5083 joint was calculated to be 71.68 MPa through high-cycle fatigue (HCF) testing. The fatigue cracks initiated from the interface of CFRP/oxide film, and then propagated to base metal. Finally, the oxide film was peeled off from the base metal under shear stress, which contributed to the fracture of the CFRP/5083 joint. The bonding strength between CFRP and 5083 aluminum alloy is far from the conventional welded joints. Therefore, feasible approaches should be proposed to obtain a more robust bonding between CFRP and aluminum alloy in the future.

Details

Title
Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance
Author
Guo, Kang; Gou, Guoqing; Lv, Hang; Meile Shan
First page
1559
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728458271
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.