Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

E-commerce system has become more popular and implemented in almost all business areas. E-commerce system is a platform for marketing and promoting the products to customer through online. Customer segmentation is known as a process of dividing the customers into groups which shares similar characteristics. The purpose of customer segmentation is to determine how to deal with customers in each category in order to increase the profit of each customer to the business. Segmenting the customers assist business to identify their profitable customer to satisfy their needs by optimizing the services and products. Therefore, customer segmentation helps E-commerce system to promote the right product to the right customer with the intention to increase profits. There are few types of customer segmentation factors which are demographic psychographic, behavioral, and geographic. In this study, customer behavioral factor has been focused. Therefore users will be analyzed using clustering algorithm in determining the purchase behavior of E-commerce system. The aim of clustering is to optimize the experimental similarity within the cluster and to maximize the dissimilarity in between clusters. In this study there are relationship between three clusters: event type, products, and categories. In this research, the proposed approach analyzed the groups that share similar criteria to help vendors to identify and focus on the high profitable segment to the least profitable segment. This type of analysis can play important role in improving the business. Grouping their customer according to their similar behavioral factor to sustain their customer for long-term and increase their business profit. It also enables high exposure of the e-offer to gain attention of potential customers. In order to process the collected data and segment the customers, an learning algorithm is used which is known as K-Means clustering. K-Means clustering is implemented to solve the clustering problems.

Details

Title
K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data
Author
Tabianan, Kayalvily 1 ; Velu, Shubashini 2   VIAFID ORCID Logo  ; Vinayakumar Ravi 3   VIAFID ORCID Logo 

 Faculty of Information Technology, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia 
 MIS Department, College of Business Faculty, Prince Mohammad bin Fahd University, Khobar 34754, Saudi Arabia; [email protected] 
 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia; [email protected] 
First page
7243
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679842247
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.