Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, microbial growth kinetics and modeling of alcohols production using Saccharomyces cerevisiae were evaluated using different hydrolysates in a single pot (batch) system. Mixed agro-waste hydrolysates from different pre-treatment methods, i.e., N. mirabilis/CP and HWP/DAP/CP, were used as the sole nutrient source in the fermentations used to produce the alcohols of interest. The maximum Saccharomyces cerevisiae concentration of 1.47 CFU/mL (×1010) was observed with HWP/DAP/CP hydrolysates, with a relative difference of 21.1% when compared to the N. mirabilis/CP cultures; the product yield based on biomass generation was relatively (20.2%) higher for the N. mirabilis/CP cultures. For the total residual phenolic compounds (TRPCs) generation, a relative difference (24.6%) between N. mirabilis/CP and HWP/DAP/CP pre-treatment systems was observed, suggesting that N. mirabilis/CP generates lower inhibition by-products. This was further evidenced by the lowest substrate utilization rate (3.3 × 10−4 g/(L·h)) for the N. mirabilis/CP cultures while achieving relatively similar product formation rates to those observed for the HWP/DAP/CP. A better correlation (R2 = 0.94) was obtained when predicting substrate utilization for the N. mirabilis/CP cultures. Generally, the pre-treatment of mixed agro-waste using N. mirabilis/CP seemed appropriate for producing hydrolysates which Saccharomyces cerevisiae can effectively use for alcohol production in the biorefinery industry.

Details

Title
Kinetic Parameters of Saccharomyces cerevisiae Alcohols Production Using Nepenthes mirabilis Pod Digestive Fluids-Mixed Agro-Waste Hydrolysates
Author
Dlangamandla, Nkosikho  VIAFID ORCID Logo  ; Angadam, Justine O; Chidi, Boredi S  VIAFID ORCID Logo  ; Maxwell Mewa-Ngongang  VIAFID ORCID Logo 
First page
10
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548383946
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.