It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present a new kind of Lagrangian duality theory for set-valued convex optimization problems whose objective and constraint maps are defined between preordered normed spaces. The theory is accomplished by introducing a new set-valued Lagrange multiplier theorem and a dual program with variables that are pointed closed convex processes. The pointed nature assumed for the processes is essential for the derivation of the main results presented in this research. We also develop a strong duality theorem that guarantees the existence of dual solutions, which are closely related to the sensitivity of the primal program. It allows extending the common methods used in the study of scalar programs to the set-valued vector case.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer