Full Text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land cover mapping is often performed via satellite or aerial multispectral/hyperspectral datasets. This paper explores new potentials for the characterisation of land cover from archive greyscale satellite sources by using classification analysis of colourised images. In particular, a CORONA satellite image over Larnaca city in Cyprus was used for this study. The DeOldify Deep learning method embedded in the MyHeritage platform was initially applied to colourise the CORONA image. The new image was then compared against the original greyscale image across various quality metric methods. Then, the geometric correction of the CORONA coloured image was performed using common ground control points taken for aerial images. Later a segmentation process of the image was completed, while segments were selected and characterised for training purposes during the classification process. The latest was performed using the support vector machine (SVM) classifier. Five main land cover classes were selected: land, water, salt lake, vegetation, and urban areas. The overall results of the classification process were then evaluated. The results were very promising (>85 classification accuracy, 0.91 kappa coefficient). The outcomes show that this method can be implemented in any archive greyscale satellite or aerial image to characterise preview landscapes. These results are improved compared to other methods, such as using texture filters.

Details

Title
Land Cover Mapping from Colorized CORONA Archived Greyscale Satellite Data and Feature Extraction Classification
Author
Agapiou, Athos 1   VIAFID ORCID Logo 

 Department of Civil Engineering and Geomatics, Faculty of Engineering and Technology, Cyprus University of Technology, Saripolou 2-8, Limassol 3036, Cyprus; [email protected]; Tel.: +357-25-002-471; Eratosthenes Centre of Excellence, Saripolou 2-8, Limassol 3036, Cyprus 
First page
771
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565309728
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.