Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing reliance of astronomy on multi-instrument and multi-messenger observations for detecting transient phenomena, communication among astronomers has become more critical. Apart from automatic prompt follow-up observations, short reports, e.g., GCN circulars and ATels, provide essential human-written interpretations and discussions of observations. These reports lack a defined format, unlike machine-readable messages, making it challenging to associate phenomena with specific objects or coordinates in the sky. This paper examines the use of large language models (LLMs)—machine learning models with billions of trainable parameters or more that are trained on text—such as InstructGPT-3 and open-source Flan-T5-XXL for extracting information from astronomical reports. The study investigates the zero-shot and few-shot learning capabilities of LLMs and demonstrates various techniques to improve the accuracy of predictions. The study shows the importance of careful prompt engineering while working with LLMs, as demonstrated through edge case examples. The study’s findings have significant implications for the development of data-driven applications for astrophysical text analysis.

Details

Title
Language Models for Multimessenger Astronomy
Author
Sotnikov, Vladimir 1   VIAFID ORCID Logo  ; Chaikova, Anastasiia 2   VIAFID ORCID Logo 

 JetBrains and Astroparticle Physics Lab, JetBrains Research, Paphos 8015, Cyprus 
 School of Computer Science & Engineering, Constructor University, 28759 Bremen, Germany 
First page
63
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754434
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829799435
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.