Content area

Abstract

Issue Title: 2011 U.S. Workshop on the Physics and Chemistry of II-VI Materials

Pulsed laser-assisted chemical etching (PLACE) offers an advanced, novel substrate preparation method for molecular beam epitaxy (MBE) growth of mercury cadmium telluride on silicon (112) wafers. By controlling the laser fluence, the chemical etch process is refined into a final polish step. PLACE offers surface roughness on the order of chemical mechanical polishing standards and has been verified by 488-nm Raman and high-resolution x-ray diffraction as causing no surface or subsurface damage. To the contrary, experiments show that using PLACE not only alters the surface chemically but also removes subsurface damage through recrystallization reaching micron depths. The process occurs in a modular vacuum chamber that could conceivably be transferred between tools so that vacuum is not broken between polishing and MBE deposition. PLACE can achieve ultra-high-purity and fine dimensional control since it is a dry process relying on pyrolytic vapor-phase reactions initiated, and constrained, by a pulsed laser. Since the process is a function of laser fluence and optics, it is imminently scalable to 6-inch wafer sizes and beyond.[PUBLICATION ABSTRACT]

Details

Title
Laser-Assisted Chemical Polishing of Silicon (112) Wafers
Author
Dandekar, Niru; Chivas, Robert; Silverman, Scott; Kou, Xiaolu; Goorsky, Mark
Pages
2790-2794
Publication year
2012
Publication date
Oct 2012
Publisher
Springer Nature B.V.
ISSN
0361-5235
e-ISSN
1543-186X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1039014802
Copyright
TMS 2012