It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Terahertz time-domain spectroscopy (THz-TDS) has emerged as a powerful and versatile tool in various scientific fields. These include—among others—imaging, material characterization, and layer thickness measurements. While THz-TDS has achieved significant success in research environments, the high cost and bulky nature of most systems have hindered widespread commercialization of this technology. Two primary factors contributing to the size and cost of these systems are the laser and the optical delay unit (ODU). Consequently, our group has focused on developing THz-TDS systems based on compact monolithic mode-locked laser diodes (MLLDs). The ultra-high repetition rate (UHRR) of the MLLD has the added benefit that it allows us to utilize shorter ODUs, thereby reducing the overall cost and size of our systems. However, achieving the necessary precision in the ODU to acquire accurate terahertz time-domain signals remains a crucial aspect. To address this issue, we have developed and enhanced an interferometric extension for UHRR-THz-TDS systems. This extension is inexpensive, compact, and easy to incorporate. In this article, we present the system setup, the extension itself, and the algorithmic procedure for reconstructing the delay axis based on the interferometric reference signal. We evaluate a dataset comprising 10,000 signal traces and report a standard deviation of the measured terahertz phase at 1.6 THz as low as 3 mrad. Additionally, we demonstrate a remaining peak-to-peak jitter of only 20 fs and a record-high peak signal-to-noise ratio of 133 dB at 100 GHz after averaging. The method presented in this paper allows for simplified THz-TDS system builds, reducing bulk and cost. As a result, it further facilitates the transition of terahertz technologies from laboratory to field applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Duisburg Essen, NTS, Duisburg, Germany (GRID:grid.5718.b) (ISNI:0000 0001 2187 5445)