Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An all-diamond photonic circuit was implemented by integrating a diamond microsphere with a femtosecond-laser-written bulk diamond waveguide. The near surface waveguide was fabricated by exploiting the Type II fabrication method to achieve stress-induced waveguiding. Transverse electrically and transverse magnetically polarized light from a tunable laser operating in the near-infrared region was injected into the diamond waveguide, which when coupled to the diamond microsphere showed whispering-gallery modes with a spacing of 0.33 nm and high-quality factors of 105. By carefully engineering these high-quality factor resonances, and further exploiting the properties of existing nitrogen-vacancy centers in diamond microspheres and diamond waveguides in such configurations, it should be possible to realize filtering, sensing and nonlinear optical applications in integrated diamond photonics.

Details

Title
Laser-Inscribed Diamond Waveguide Resonantly Coupled to Diamond Microsphere
Author
Nurperi Yavuz; Mustafa Mert Bayer  VIAFID ORCID Logo  ; Ҫirkinoğlu, Hüseyin Ozan; Serpengüzel, Ali; Thien Le Phu; Giakoumaki, Argyro  VIAFID ORCID Logo  ; Bharadwaj, Vibhav; Ramponi, Roberta; Eaton, Shane M
First page
2698
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2413246628
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.