Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The lateral oscillations of vehicle trajectories are a significant cause of collisions. There is a dearth of research, however, on the oscillatory behaviors of vehicles driving on straight sections of freeways. This study aimed to investigate the effects of vehicle type, lane position, and speed on oscillation behavior and to propose quantitative indicators to explain lateral oscillation characteristics. Based on these characteristics, a more appropriate lane width can be determined. First, the k-means algorithm was performed to cluster the vehicles into three categories: passenger cars, medium-large cars, and extra-large trucks. Then, statistical methods such as analysis of variance (ANOVA) and regression analysis were employed to elaborate on the speed distribution, lateral amplitude (LA), and distance traveled within the oscillation cycle (DTOC) for various vehicle types. The results show that different types of vehicles have different lateral oscillation tendencies. The LA and DTOC for passenger cars are generally more extensive than for medium-large cars and extra-large trucks, and their oscillation patterns are the most complicated. The vehicle trajectory oscillation pattern varies significantly for different lane positions and speeds, but speed is the dominant influencing factor. The naturalistic driving dataset from German freeways served as the foundation for this study. These results can assist road engineers in better understanding the behavioral characteristics of vehicle trajectory oscillations and designing safer freeways.

Details

Title
Lateral Oscillation Characteristics of Vehicle Trajectories on the Straight Sections of Freeways
Author
Ding, Rui 1   VIAFID ORCID Logo  ; Pan, Cunshu 1 ; Dai, Zhenhua 1 ; Xu, Jin 2   VIAFID ORCID Logo 

 School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China 
 School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Key Laboratory of “Human-Vehicle-Road” Cooperation and Safety for Mountain Complex Environment, Chongqing Jiaotong University, Chongqing 400074, China 
First page
11498
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739425685
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.