Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With global increases in saline soil, it has become increasingly important to decipher salt-tolerance mechanisms and identify strategies to improve salt tolerance in crops. Halophytes complete their life cycles in environments containing ≥200 mM NaCl; these remarkable plants provide a potential source of genes for improving crop salt tolerance. Recretohalophytes such as Limonium bicolor have salt glands that secrete Na+ on their leaf epidermis. Here, we identified Lb1G04202, an uncharacterized gene with no conserved domains, from L. bicolor, which was highly expressed after NaCl treatment. We confirmed its expression in the salt gland by in situ hybridization, and then heterologously expressed Lb1G04202 in Arabidopsis thaliana. The transgenic lines had a higher germination rate, greater cotyledon growth percentage, and longer roots than the wild type (WT) under NaCl treatments (50, 100 and 150 mM). At the seedling stage, the transgenic lines grew better than the WT and had lower Na+ and malonyldialdehyde accumulation, and higher K+ and proline contents. This corresponded with the high expression of the key proline biosynthesis genes AtP5CS1 and AtP5CS2 under NaCl treatment. Isotonic mannitol treatment showed that Lb1G04202 overexpression significantly relieved osmotic stress. Therefore, this novel gene provides a potential target for improving salt tolerance.

Details

Title
Lb1G04202, an Uncharacterized Protein from Recretohalophyte Limonium bicolor, Is Important in Salt Tolerance
Author
Wang, Xi; Wang, Baoshan; Yuan, Fang  VIAFID ORCID Logo 
First page
5401
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670189070
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.