1. Introduction
The appearance of the first representatives of the Vitaceae family (genus Vitis) dates from the Upper Cretaceous period [1]. Several types of fossil grapes of genus Vitis have been found in different parts of North America [2]. In the Eocene, representatives of the genus Vitis were widespread in Eurasia and the Far North [2]. In the Paleogene, one of the best-preserved species of fossil grapes Vitis sachalinensis Krysht. was found and described in the sediments of the Sakhalin Island, the Russian Far East. These data show that the evolution of the vine in the territory of Russia proceeded from ancient times. Moreover, now wild grapes of the genus Vitis grow in many Russian regions [3,4]. At the same time, there is very little information about the culture of East Asian grapes.
Grape berries contain 65–85% water; 10–33% sugar (glucose and fructose); flofaben; gallic acid; quercetin; oenin; the glycosides monodelphinidin and delphinidin; the acids malic, hydrosilicic, ortho-hydroxybenzoic, phosphoric, tartaric, citric, succinic, formic, pectin, and tannins; salts of potassium; magnesium; calcium; manganese; cobalt; iron vitamins B1, B2, B6, B12, A, C, P, and PP; folic acid; and enzymes. The dominant class of biologically active compounds of fruits and especially grape ridges are flavonoids, in particular complexes of oligomeric proanthocyanidins (condensed tannins), which are polymeric forms of flavonoids from the group of catechins, and their monomeric units, namely catechins and leuсoanthocyanidins [5].
Many studies have been devoted to the biological activity of flavonoids and complexes of oligomeric proanthocyanidins [6,7]. Complexes of oligomeric proanthocyanidins act as traps of free radicals and block the process of lipid peroxidation of biological membranes [8,9]. Their antioxidant activity is many times higher than that of vitamins E and C. They can inhibit the activity of many enzymes (hydrolase, oxidoreductase, kinase, transferase, among others) [10]. Due to the wide spectrum of action, the active compounds of the grapes V. amurensis have a pronounced positive effect on various organs and systems of the body, such as antihypertensive and vasostrengthening effects, as well as antidiabetic, anti-inflammatory, antiallergy, anticarcinogenic, antistress, radioprotective, and antirheumatic effects. Moreover, flavonoids have an anti-Alzheimer’s activity [11,12,13].
This work presents a detailed comparative study of the metabolomic composition of wild V. amurensis grape berry extracts taken from six different locations of the Russian Far East and four cultural specimens of V. amurensis obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). High-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry was used to identify target analytes in the extracts. Previously, the authors carried out metabolomic studies of Far Eastern plant species, such as Schizandra chinensis, Rhodiola rosea, Rhododendron adamsii, and Panax ginseng [14,15].
2. Results
The metabolome of ten samples of wild and cultural V. amurensis was analyzed and compared. A combination of both ionization modes (positive and negative) in MS full scan mode was applied for the molecular mass determination of the compounds in ethanolic extracts of V. amurensis. Compound identification was performed by comparing the observed m/z values and the fragmentation patterns with the literature. The list of compounds identified in the ethanolic extract of V. amurensis are represented in Table A1. The 118 compounds shown in Table A1 belong to different phenolic families, namely anthocyanidins, flavones, flavonols, flavan-3-ols, flavanones, hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, and tannins.
2.1. Anthocyanidins and Anthocyanins
A total of 18 anthocyanin compounds have been identified in the analyzed samples of V. amurensis (Table 1). The anthocyanins pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, and petunidin-3-(6-O-coumaroyl) glucoside have already been characterized as a component of Far East V. amurensis [16]. The anthocyanins malvidin-3-O-acetylhexoside, delphinid-3,5-O-diglucoside, malvidin-3-O-rutinoside, malvidin 3-acetyl-5-glucoside, petunidin 3-coumaroylglucoside-5-O-glucoside, and malvidin 3-coumaroylglucoside-5-O-glucoside were only found in the extracts of cultivated V. amurensis (St. Petersburg).
2.2. Other Flavonoid Compounds
A total of 42 flavonoid compounds were identified in analyzed V. amurensis samples (Table 2). The flavonols dihydrokaempferol, kaempferide, mearnsetin, kaempferol-3-O-glucoside, dihydrokaempferol glucoside, isorhamnetin 3-O-rhamnoside, hyperoside, taxifolin-3-O-glucoside, kaempferol 3,7-di-O-glucoside, and quercetin-O-dihexoside have been already characterized as components of Far East V. amurensis.
2.3. Phenolic Acids and Other Compounds
In addition, 22 phenolic acids and 37 other compounds were identified in analyzed V. amurensis samples (Table 3). It should be noted that the coumarins umbelliferone and fraxin; the sterol fucosterol; and the flavanols taxifolin-3-O-glucoside, kaempferol-3,7-di-O-glucoside; hydroxycinnamic acids 3-p-coumaroyl-4-caffeoylquinic acid, and 5-O-(4’-O-p-coumaroyl glucosyl) quinic acid were identified by mass spectrometry only in samples of wild V. amurensis grapes collected from the Pakhtusov Islands and Rikord Island, Peter the Great Bay, Sea of Japan.
3. Discussion
In general, the diversity of phytochemicals identified in wild and cultural grape V. amurensis resulted in the following descending order (number of metabolites in parenthesis): VZK (52) > ART (46) > SPB-2 (39) > SPB-1 (28) > SPB-4 (27) > PAK (25) > RIK (22) > KAL (20) > SPB-3 (19) > ARS (18). The most diverse metabolome was identified in the grapes collected in the vicinity of Vyazemsky, Khabarovsk Territory, which was rich in flavanols and phenolic acids.
The anthocyanins identified in V. amurensis in this study were previously identified and annotated in the vines [17] Solanium nigrum [18], Gaultheria Antarctica [19], and Vitis vinifera [20] and wheat [21]. Our identification of flavonoid compounds agrees with bibliographic data for Echinops [22], Rhodiola rosea [23], Ocimum [24], Alpinia officinarum [25], Brazilian propolis [26], Vitis vinifera [20], Rubus occidentalis [27], C. edulis [28], and Vaccinium macrocarpon [29].
Although wild grapes tend to be more diverse than cultivated varieties [30], this number of anthocyanins in one form is quite rare and more likely to occur in other berries, such as blueberries [31]. We hypothesize that many different anthocyanins are associated with rather low temperatures in summer and monsoon climates. To respond to adverse conditions, various anthocyanins are produced [32]. In addition, V. amurensis have an increased acidity of the fruit, which is also associated with unfavorable growing conditions [33]. As it is known, anthocyanins and many other phenolic compounds participating in the protective processes of plants are more stable in an acidic environment [34].
4. Materials and Methods
4.1. V. amurensis Samples
Ten samples of wild and cultivated grape V. amurensis were selected for the performance of metabolomic study. Six samples of wild V. amurensis were collected from different places in the Primorsky and Khabarovsk territories, Far Eastern Russia (Table 4, Figure 1). Four samples of cultivated V. amurensis, namely SPB-1, SPB-2, SPB-3, and SPB-4, were obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg. The grapes were harvested at the end of August and September 2020. Each sample included 100 g of grape berries.
4.2. Chemicals and Reagents
HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was obtained with Siemens Ultra-Clear TWF EDI UV UF TM Water Purification System (Siemens, Munich, Germany). All the other chemicals were of analytical grade.
4.3. Fractional Maceration
Fractional maceration with ethyl alcohol was applied to obtain highly concentrated extracts of V. amurensis. Each sample of V. amurensis was divided into three parts and consistently infused. The infusion time of each part of the extractant was seven days.
4.4. Liquid Chromatography
The separation of multicomponent mixtures was performed by a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV detector and a Shodex ODP-40 4E reverse-phase column (4.6 × 250 mm, particle size 4 µm). The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0.01–2 min, 100% B; 2–50 min, 100–0% B; control washing 50–60 min, 0% B. The entire HPLC analysis was done with an SPD-20A detector at wavelengths of 230 and 330 nm; the temperature corresponded to 40 °C. The injection volume was 10 µL.
4.5. Mass Spectrometry
MS analysis was performed on an ion trap amaZon SL (Bruker Daltonics, Bremen, Germany). Four-stage ion separation (MS/MS mode) was implemented. All the chemical profiles of the samples were obtained by the HPLC–ESI–MS/MS method. The working parameters were as follows: ionization source temperature 50 °C, gas flow 4 L/min, nebulizer gas (atomizer) 7.3 psi, capillary voltage 4500 V, endplate bend voltage 1500 V, fragmentary voltage 280 V, and collision energy 60 eV. The ion trap was used in the scan range of 100–1.700 m/z for MS and MS/MS. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. The mass spectra were recorded in negative and positive ion mode. Data collection was controlled by Hystar DataAnalisys 4.1 software (Bruker Daltonics, Bremen, Germany). All the measurements were performed in triplicate.
Author Contributions
Conceptualization, M.R. and A.Z.; methodology, M.R. and I.D. resources, S.E., E.K., I.S., and A.S.; investigation, M.R.; data curation, K.P.; writing—original draft preparation, M.R.; writing—review and editing, A.Z. and K.P.; supervision, K.G. and T.K.; project administration, Y.M.; funding acquisition, K.G. All authors have read and agreed to the published version of the manuscript.
Funding
This research received no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
Appendix A
Table A1
The list of compounds identified in ethanolic extracts of V. amurensis.
No. | Identified Compound | Molecular Formula | Calculated Mass | Precursor Ion, m/z | Fragment Ions, m/z | References | |
---|---|---|---|---|---|---|---|
[M–H]– | [M+H]+ | ||||||
Anthocyanins | |||||||
1. | Cyanidin 3,5-O-diglucoside | C27H31O16 | 611.5335 | 611 | 287; 449; 269; 231; 199; 161; 231; 213; 189; 175; 147 | [35,36] | |
2. | Cyanidin-3-O-glucoside | C21H21O11 | 449.3848 | 449 | 287; 206; 143 | [19,20,35,37,38] | |
3. | Delphinidin 3-O-glucoside | C21H21O12+ | 465.3905 | 465 | 303; 257; 229; 201; 165; 239; 213; 173; 145; 117 | [19,20,21,39] | |
4. | Delphinidin-3,5-O-diglucoside | C27H30O17 | 626.5169 | 627 | 465; 303; 257; 153; 229; 155 | [18,40] | |
5. | Malvidin 3,5-O-diglucoside | C32H31O15 | 655.5795 | 655 | 493; 331; 315; 179; 313 | [17,20,21] | |
6. | Malvidin 3-(6-O-acetyl) glucoside | C25H27O13 | 535.478 | 537 | 331; 299; 261; 243; 211; 154; 111 | [20,39] | |
7. | Malvidin 3-(6-O-coumaroyl) glucoside | C32H31O14 | 639.5801 | 639 | 331; 315; 299; 270; 242; 179; 150; 287; 213 | [20,39,40] | |
8. | Malvidin 3-coumaroylglucoside-5-O-glucoside | C35H45O21 | 801.7192 | 801 | 639; 493; 331; 315; 287; 270; 242; 300 | [39] | |
9. | Malvidin 3-O-acetyl hexoside | C25H27O14 | 535.479 | 537 | 331; 305; 261; 207; 185; 255; 229; 211 | [17] | |
10. | Malvidin 3-O-glucoside | C23H25O12 | 493.4374 | 493 | 331; 315; 179 | [20,39,40] | |
11. | Pelargonidin-3-O-glucoside (callistephin) | C21H21O10 | 433.3854 | 433 | 414; 271; 172; 226; 116 | [35,39,41] | |
12. | Peonidin-3,5-О-diglucoside [Peonin; Peonidin 3-glucoside-5-glucoside] | C28H33O16 | 625.5520 | 625 | 301; 463; 286; 258 | [21,39,40] | |
13. | Peonidin-3-O-glucoside | C22H23O11 + | 463.4114 | 463 | 301; 286; 268; 258; 230; 202; 174; 121 | [20,39,41] | |
14. | Petunidin 3-(6-O-coumaroyl) glucoside | C31H29O14 | 625.553 | 625 | 317; 302; 274; 218 | [20,39,40] | |
15. | Petunidin 3-coumaroylglucoside-5-O-glucoside | C34H43O21 | 787.6926 | 787 | 625; 479; 317; 301; 246; 302; 274; 228 | [39,40] | |
16. | Petunidin 3-galactoside | C22H23O12+ | 479.4108 | 479 | 317; 302; 273 | [19,20,21,39] | |
17. | Petunidin 3,5-diglucoside | C28H33O17 | 641.5514 | 641 | 317; 479; 420; 257; 302; 274; 228 | [39,40] | |
Flavonols | |||||||
18. | Dihydrokaempferol | C15H12O6 | 288.2522 | 289 | 271; 199; 127; 243; 189; 118 | [22,42] | |
19. | Dihydrokaempferol glucoside | C21H22O11 | 450.3928 | 449 | 287; 227; 269; 225; 149 | [27] | |
20. | Dihydroquercetin (taxifolin; taxifoliol) | C15H12O7 | 304.2516 | 305 | 259; 149; 199; 241; 159; 171 | [20,43,44] | |
21. | Herbacetin [3,5,7,8-tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] | C15H10O7 | 302.2357 | 301 | 179; 273; 121; 151 | [24,45] | |
22. | Hyperoside (quercetin 3-O-galactoside; hyperin) | C21H20O12 | 464.3763 | 463 | 301; 179; 257; 255; 147 | [43,46,47,48] | |
23. | Isorhamnetin [isorhamnetol; quercetin 3’-methyl ether; 3-methylquercetin] | C16H12O7 | 316.2623 | 317 | 299; 270; 230; 207;177; 165;147; 123; 147; 123; 119 | [49,50] | |
24. | Isorhamnetin 3-O-glucoside | C22H22O12 | 478.4029 | 479 | 317; 301; 257; 274; 228; 150 | [20,47,51] | |
25. | Isorhamnetin 3-O-rhamonoside | C22H22O11 | 462.4035 | 461 | 315; 152; 219 | [28,49] | |
26. | Kaempferide | C16H12O6 | 300.2629 | 301 | 283; 265; 239; 211; 185; 133; 151 | [20,24,26] | |
27. | Kaempferol | C15H10O6 | 286.2363 | 287 | 269; 227; 153 | [20,24,50] | |
28. | Kaempferol diglycoside | C27H30O16 | 610.5175 | 611 | 449; 287; 229; 165; 213; 111 | [52,53] | |
29. | Kaempferol glycoside | C21H20O11 | 448.3769 | 449 | 287; 269; 217 | [20,47] | |
30. | Mearnsetin | C16H12O8 | 332.2617 | 333 | 318; 301; 273; 245; 193; 165; 139; 289; 271; 219; 153; 136 | [49] | |
31. | Myricetin | C15H10O8 | 318.2351 | 317 | 273; 191; 255; 229; 205; 187; 163; 125; 227 | [20,28,54] | |
32. | Myricetin-3-O-galactoside | C21H20O13 | 480.3757 | 479 | 299; 153; 271; 243; 171 | [47,48,55] | |
33. | Quercetin | C15H10O7 | 302.2357 | 303 | 285; 163; 267; 159; 239 | [20,24,37,43] | |
34. | Quercetin 3-O-glucoside [Isoquercitrin; Hirsutrin] | C21H20O12 | 464.3763 | 465 | 303; 285; 257; 229; 201; 150; 155 | [20,27,47,56] | |
35. | Quercetin-3-O-glucuronide | C21H18O13 | 478.3598 | 477 | 301; 179; 273; 151 | [39,47,57] | |
36. | Quercetin-O-dihexoside | C27H30O17 | 626.5179 | 627 | 303; 257; 150; 229 | [51,58] | |
37. | Rutin (quercetin 3-O-rutinoside) | C27H30O16 | 610.5175 | 611 | 303; 229; 257 | [27,35,37,56] | |
38. | Taxifolin-3-O-glucoside | C21H22O12 | 466.3922 | 467 | 449; 303; 188; 287; 132; 260 | [20] | |
Flavones | |||||||
39. | Apigenin [5,7-dixydroxy-2-(40hydroxyphenyl)-4H-chromen-4-one] | C15H10O5 | 270.2369 | 271 | 253; 181; 137 | [56,59,60] | |
40. | Luteolin | C15H10O6 | 286.2363 | 287 | 271; 225; 175; 158 | [43,56,59,60] | |
41. | Diosmetin [luteolin 4’-methyl ether; salinigricoflavonol] | C16H12O6 | 300.2629 | 301 | 286; 258; 229; 184; 153; 124 | [61,62,63] | |
42. | Cirsimaritin [scrophulein; 4’,5-dihydroxy-6,7-dimethoxyflavone; 7-methylcapillarisin] | C17H14O6 | 314.2895 | 313 | 298; 247; 151; 270 | [24] | |
43. | Nevadensin | C18H16O7 | 344.3154 | 343 | 328; 259; 313; 269 | [24,63] | |
44. | Syringetin | C17H14O8 | 346.2883 | 345 | 330; 315; 246; 151; 287; 271; 203; 183; 163 | [28] | |
45. | Pentahydroxy trimethoxy flavone | C18H16O10 | 392.3136 | 393 | 378; 347; 317; 284; 246; 206; 349; 321; 284; 193; 322; 304;282; 196; 154 | [28] | |
46. | Apigenin diglycoside | C21H20O10 | 432.3775 | 433 | 414; 287; 186; 241; 158 | [20,56,64,65] | |
47. | Vitexin [apigenin 8-C-glucoside] | C21H20O10 | 432.3775 | 431 | 249; 221; 192 | [57,66,67] | |
48. | Luteolin diglycoside | C21H20O11 | 448.3769 | 449 | 287; 213; 137; 185 | [20,55,56,66,68] | |
49. | Isovitexin 6”-O-deoxyhexoside [apigenin 6-C-glucoside 6”-O-deoxyhexoside] | C27H30O14 | 578.5187 | 579 | 415; 297; 177; 397; 344; 362 | [66] | |
50. | Vitexin glucoside | C27H30O15 | 594.5181 | 595 | 415; 353; 283; 265; 176 | [66] | |
51. | Apigenin glucoside | C29H32O15 | 620.5554 | 621 | 561; 547; 461; 533; 461; 433 | [66] | |
Flavan-3-ols | |||||||
52. | Catechin [D-catechol] | C15H14O6 | 290.2681 | 289 | 245; 205; 203; 188 | [43,49,55,57] | |
53. | Epicatechin | C15H14O6 | 290.2681 | 291 | 272; 175; 130; 157; 140 | [20,49,55] | |
54. | Gallocatechin [+(-)gallocatechin] | C15H14O7 | 306.2675 | 305 | 179; 125 | [20,28,43,44] | |
55. | Catechin gallate | C22H18O10 | 442.3723 | 441 | 289; 169; 245; 205; 203 | [20,56] | |
Flavanones | |||||||
56. | Naringenin [Naringetol; Naringenine] | C15H12O5 | 272.5228 | 273 | 227; 155; 209; 139 | [20,43,49] | |
57. | Hesperitin [Hesperetin] | C16H14O6 | 302.2788 | 301 | 257; 151; 228; 189 | [20,43,68] | |
58. | Eriodictyol-7-O-glucoside [Pyracanthoside; miscanthoside] | C21H22O11 | 450.3928 | 449 | 269; 207; 251; 165 | [48,65,68] | |
59. | Hexahydroxyflavanone hexoside | C21H22O13 | 482.3916 | 483 | 437; 359; 263; 231; 298; 255; 225; 155 | [28] | |
Hydroxybenzoic acids | |||||||
60. | 4-hydroxybenzoic acid | C7H6O3 | 138.1207 | 139 | 121 | [20,69,70] | |
61. | Protocatechuic acid | C7H6O4 | 154.1201 | 155 | 127 | [20,28,55] | |
62. | Gallic acid | C7H6O5 | 170.1195 | 171 | 126 | [20,54,55] | |
63. | Syringic acid [benzoic acid; cedar acid] | C9H10O5 | 198.1727 | 199 | 154; 140; 111; 140; 123; 125 | [20,55,71] | |
64. | Ellagic acid [benzoaric acid; elagostasine] | C14H6O8 | 302.1926 | 303 | 172; 158; 144; 127; 116 | [27,41,44] | |
65. | Salvianolic acid F | C17H14O6 | 314.2895 | 315 | 269; 243; 213;185; 144; 207; 181; 153; 179; 161; 133 | [69] | |
66. | Dihydroxybenzoyl-hexoside | C13H16O9 | 316.2607 | 315 | 153; 253; 151; 184 | [66] | |
67. | Salvianolic acid G | C18H12O7 | 340.2837 | 341 | 323; 295; 255; 195; 159; 305 | [63,72] | |
68. | Salvianolic acid D | C20H18O10 | 418.3509 | 417 | 373; 329; 287; 209 | [69,73] | |
Hydroxycinnamic acids | |||||||
69. | p-Coumaric acid | C9H8O3 | 164.16 | 165 | 146; 119 | [20,46,55,73] | |
70. | Sinapic acid [trans-sinapic acid] | C11H12O5 | 224.2100 | 225 | 179; 153; 115; 133; 115 | [20,37,55,74] | |
71. | Caffeoylmalic acid | C13H12O8 | 296.2296 | 295 | 133; 179; 148; 119; 115 | [28] | |
72. | Coutaric acid [trans-p-Coumaroyltartaric acid] | C13H12O8 | 296.2296 | 295 | 163; 119 | [20] | |
73. | Caftaric acid [cis-caftaric acid; 2-caffeoyl-L-tartaric acid; caffeoyl tartaric acid} | C13H12O9 | 312.23 | 311 | 149; 221; 131 | [20,38,64,69] | |
74. | Fertaric acid [fertarate] | C14H14O9 | 326.2556 | 325 | 193; 149; 134 | [20] | |
75. | p-Coumaric acid-O-hexoside [trans-p-coumaric acid 4-glucoside] | C15H18O8 | 326.2986 | 325 | 193; 163; 119 | [28,57,75] | |
76. | 1-caffeoyl-beta-D-glucose [caffeic acid-glucoside] | C15H18O9 | 342.298 | 341 | 179; 161; 135 | [20,66] | |
77. | 5-O-(4’-O-p-coumaroyl glucosyl) quinic acid | C22H28O13 | 500.4499 | 501 | 339; 277; 203 | [56] | |
78. | 3-p-coumaroyl-4-caffeoylquinic acid | C25H24O11 | 500.4515 | 501 | 355; 483; 181; 225; 281; 193; 120; 133 | [76] | |
79. | Coumaric acid derivative | C30H30O7 | 502.5550 | 503 | 457; 411; 382; 339; 293; 409; 391; 367; 323; 293; 233; 205 | [57] | |
80. | Di-O-caffeoylquinic acid | C25H24O12 | 516.4509 | 517 | 355; 339; 202 | [58,66,76] | |
81. | Caffeic acid-O-(sinapoyl-O-hexoside) | C26H30O14 | 566.5080 | 567 | 405; 520; 249; 234 | [57,77] | |
Other compounds | |||||||
82. | Malic acid | C4H6O5 | 134.0874 | 133 | 115 | [57,69,78] | |
83. | Tartaric acid | C4H6O6 | 150.0900 | 149 | 131 | [78,79] | |
84. | Umbelliferone | C9H6O3 | 162.1421 | 161 | 115 | [20,28,54] | |
85. | Shikimic acid | C7H10O5 | 174.1513 | 175 | 112 | [28,78] | |
86. | Indole-3-carboxylic acid | C10H9NO2 | 175.1840 | 176 | 130 | [75] | |
87. | Esculetin [Cichorigenin; Aesculetin] | C9H6O4 | 178.1415 | 179 | 133; 115 | [20] | |
88. | Citric acid | C6H8O7 | 192.1235 | 191 | 111; 173; 143; 127 | [57,59,79] | |
89. | Quinic acid | C7H12O6 | 192.1666 | 191 | 111; 173 | [20,28,57,59] | |
90. | Dihydroferulic acid | C10H12O4 | 196.1999 | 195 | 159; 129; 113; 122 | [28,80,81] | |
91. | Ethyl gallate | C9H10O5 | 198.1727 | 197 | 169; 125 | [45] | |
92. | L-Tryptophan [tryptophan; (S)-tryptophan] | C11H12N2O2 | 204.2252 | 205 | 188; 146; 170; 118 | [41,66] | |
93. | Myristoleic acid [cis-9-tetradecanoic acid] | C14H26O2 | 226.3550 | 227 | 209; 181; 155; 199; 181; 127 | [28] | |
94. | Resveratrol [trans-resveratrol; stilbentriol] | C14H12O3 | 228.2433 | 229 | 142; 184; 114 | [28,43] | |
95. | Linolenic acid (alpha-linolenic acid; linolenate) | C18H30O2 | 278.4296 | 279 | 260; 176; 120 | [62,74] | |
96. | 9-oxo-10E,12Z-octadecanoic acid [9-oxo-ODE] | C18H30O3 | 294.4290 | 295 | 249; 165; 220; 125 | [62,82] | |
97. | Nonadecadienoic acid | C19H34O2 | 294.4721 | 295 | 278; 250; 211; 172; 204; 181; 176 | [28] | |
98. | Protocatechuic acid-O-hexoside | C13H16O9 | 316.2607 | 315 | 153; 298; 151 | [57,69,75] | |
99. | Bilobalide [(-)-Bilobalide] | C15H18O8 | 326.2986 | 325 | 183; 261; 119; 183 | [46,50,75] | |
100. | 3,7-dimethylquercetin | C17H14O7 | 330.2889 | 331 | 314; 297; 255; 228; 203; 146; 267; 227; 203; 186; 164; 134 | [75] | |
101. | Galloyl glucose [beta-glucogallin; 1-O-galloyl-beta-D-glucose] | C13H16O10 | 332.2601 | 331 | 313; 195; 166 | [41] | |
102. | Gallic acid hexoside | C13H16O10 | 332.2601 | 331 | 271; 169; 125 | [83] | |
103. | Erucic acid (cis-13-docosenoic acid) | C22H42O2 | 338.5677 | 339 | 132; 293 | [65] | |
104. | Esculin [aesculin; esculoside; polichrome] | C15H16O9 | 340.2821 | 339 | 177; 293; 131 | [20,28,56] | |
105. | Palmatine [berbericinine; Burasaine] | C21H22NO4 | 352.4037 | 353 | 335; 235; 317; 235; 137 | [84] | |
106. | Hexose-hexose-N-acetyl | C14H25NO10 | 367.3490 | 366 | 186; 142 | [85] | |
107. | Fraxin (fraxetin-8-O-glucoside) | C16H18O10 | 370.3081 | 371 | 208; 352; 135 | [20] | |
108. | 1-O-sinapoyl-beta-D-glucose | C17H22O10 | 386.3576 | 387 | 205; 130 | [20] | |
109. | Polydatin [piceid; trans-piceid] | C20H22O8 | 390.3839 | 389 | 227; 343; 184; 143 | [27,43] | |
110. | Fucosterol [fucostein; trans-24-ethylidenecholesterol] | C29H48O | 412.6908 | 413 | 395; 355; 271; 194; 119; 297; 199; 268; 187 | [28] | |
111. | Stigmasterol [stigmasterin; beta-stigmasterol] | C29H48O | 412.6908 | 413 | 301; 259; 189; 171 | [28,86,87] | |
112. | Phlorizin [phloridzin; phlorizoside; floridzin: phlorrhizin; phloretin 2’-glucoside; phloretin-O-hexoside] | C21H24O10 | 436.4093 | 437 | 397; 217; 377 | [20,27,46,49,57] | |
113. | Oleanoic acid | C30H48O3 | 456.7003 | 457 | 439; 411; 365; 337; 293; 248; 205; 364; 309; 219; 319; 301; 279; 247; 232 | [24,76] | |
114. | Ursolic acid | C30H48O3 | 456.7003 | 457 | 411; 393; 365; 337; 279; 247; 292; 247; 219; 205 | [63,76,86] | |
115. | Anmurcoic acid | C30H46O5 | 486.6922 | 487 | 469; 427; 397; 367; 325; 307; 304; 261; 279 | [76] | |
116. | Dimethylellagic acid hexose | C22H20O13 | 492.3864 | 493 | 331; 299; 270; 242; 179; 150; 225 | [41] | |
117. | Procyanidin A-type dimer | C30H24O12 | 576.501 | 577 | 425; 397; 373; 287; 245; 181; 245; 218; 189; 123 | [20,55,57] | |
118. | Cyclopassifloic acid glucoside | C37H62O12 | 698.8810 | 699 | 537; 347; 271; 259; 185 | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure and Tables
Table 1Anthocyanins identified in the ethanolic extracts of V. amurensis.
No. | Identified Compound | ARS | ART | KAL | PAK | RIK | VZK | SPB-1 | SPB-2 | SPB-3 | SPB-4 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Cyanidin 3,5-O-diglucoside | + | + | + | + | + | |||||
2. | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-glucoside] | + | |||||||||
3. | Delphinidin 3-O-glucoside | + | + | ||||||||
4. | Delphinidin-3,5-O-diglucoside | + | |||||||||
5. | Malvidin 3-(6-O-acetyl) glucoside | + | + | + | |||||||
6. | Malvidin 3-(6-O-coumaroyl) glucoside | + | + | ||||||||
7. | Malvidin 3-(6’-p-caffeoylglucoside) | + | + | + | + | + | + | ||||
8. | Malvidin 3,5-diglucoside | + | + | + | + | + | + | + | + | ||
9. | Malvidin 3-coumaroylglucoside-5-O-glucoside | + | |||||||||
10. | Malvidin 3-O-acetyl hexoside | + | |||||||||
11. | Malvidin 3-O-glucoside | + | + | + | + | + | + | + | + | ||
12. | Pelargonidin-3-O-glucoside (callistephin) | + | |||||||||
13. | Peonidin-3,5-О-diglucoside [peonin; peonidin 3-glucoside-5-glucoside] | + | + | + | + | + | + | ||||
14. | Peonidin-3-O-glucoside | + | + | + | |||||||
15. | Petunidin 3-(6-O-coumaroyl) glucoside | + | |||||||||
16. | Petunidin 3-coumaroylglucoside-5-O-glucoside | + | |||||||||
17. | Petunidin 3-O-glucoside-5-O-glucoside [Petunidin 3,5-di-O-beta-D-glucoside] | + | + | + | + | + | |||||
18. | Petunidin-3-O-glucoside | + | |||||||||
Total number | 2 | 10 | 5 | 1 | 3 | 8 | 7 | 8 | 6 | 6 |
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 2Other flavonoid compounds identified in the ethanolic extracts of V. amurensis.
No. | Identified Compound | ARS | ART | KAL | PAK | RIK | VZK | SPB-1 | SPB-2 | SPB-3 | SPB-4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavonols | ||||||||||||||||||||
1. | Quercetin-3-O-glucuronide | + | + | + | + | + | + | + | + | + | ||||||||||
2. | Kaempferol | + | + | + | + | + | + | |||||||||||||
3. | Quercetin | + | + | + | + | + | ||||||||||||||
4. | Isorhamnetin [Isorhamnetol; Quercetin 3’-Methyl ether] | + | + | + | + | |||||||||||||||
5. | Isorhamnetin 3-O-glucoside | + | + | + | + | |||||||||||||||
6. | Myricetin-3-O-galactoside | + | + | + | + | |||||||||||||||
7. | Quercetin 3-O-glucoside [Isoquercitrin; Hirsutrin] | + | + | + | + | |||||||||||||||
8. | Myricetin | + | + | + | ||||||||||||||||
9. | Dihydrokaempferol | + | + | |||||||||||||||||
10. | Dihydroquercetin (Taxifolin; Taxifoliol) | + | + | |||||||||||||||||
11. | Hyperoside (Quercetin 3-O-galactoside; Hyperin) | + | + | |||||||||||||||||
12. | Kaempferol diglycoside | + | + | |||||||||||||||||
13. | Kaempferol glycoside | + | + | |||||||||||||||||
14. | Dihydrokaempferol glucoside | + | ||||||||||||||||||
15. | Herbacetin | + | ||||||||||||||||||
16. | Isorhamnetin 3-O-rhamonoside | + | ||||||||||||||||||
17. | Kaempferide | + | ||||||||||||||||||
18. | Mearnsetin | + | ||||||||||||||||||
19. | Quercetin-O-dihexoside | + | ||||||||||||||||||
20. | Rutin (Quercetin 3-O-rutinoside) | + | ||||||||||||||||||
21. | Taxifolin-3-O-glucoside | + | ||||||||||||||||||
Total number: | 3 | 9 | 2 | 1 | 4 | 8 | 3 | 6 | 2 | 4 | ||||||||||
Flavones | ||||||||||||||||||||
22. | Apigenin | + | + | + | + | + | + | |||||||||||||
23. | Syringetin | + | + | + | + | |||||||||||||||
24. | Luteolin diglycoside | + | + | + | ||||||||||||||||
25. | Nevadensin | + | + | |||||||||||||||||
26. | Vitexin 2”-O-glucoside [Apigenin 8-C-glucoside 2”-O-glucoside] | + | + | |||||||||||||||||
27. | Luteolin | + | ||||||||||||||||||
28. | Diosmetin [Luteolin 4’-Methyl Ether; Salinigricoflavonol] | + | ||||||||||||||||||
29. | Pentahydroxy trimethoxy flavone | + | ||||||||||||||||||
30. | Apigenin diglycoside | + | ||||||||||||||||||
31. | Vitexin [ Apigenin 8-C-Glucoside] | + | ||||||||||||||||||
32. | Vitexin glucoside | + | ||||||||||||||||||
33. | Apigenin glucoside | + | ||||||||||||||||||
Total number: | 2 | 3 | 2 | 2 | 1 | 3 | 2 | 4 | 2 | 3 | ||||||||||
Dimethoxyflavone | ||||||||||||||||||||
34. | Cirsimaritin [Scrophulein; 4’,5-dihydroxy-6,7-dimethoxyflavone; 7-methylcapillarisin] | + | ||||||||||||||||||
Flavan-3-ols | ||||||||||||||||||||
35. | Catechin [D-Catechol] | + | + | + | + | + | + | + | + | |||||||||||
36. | Epicatechin | + | + | |||||||||||||||||
37. | Gallocatechin [+(-)Gallocatechin] | + | ||||||||||||||||||
38. | Catechin gallate | + | ||||||||||||||||||
Total number: | 0 | 2 | 0 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | ||||||||||
Flavanones | ||||||||||||||||||||
39. | Naringenin [Naringetol; Naringenine] | + | + | + | ||||||||||||||||
40. | Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] | + | + | |||||||||||||||||
41. | Hesperitin [Hesperetin] | + | ||||||||||||||||||
42. | Hexahydroxyflavanone hexoside | + | ||||||||||||||||||
Total number: | 0 | 1 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 1 |
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 3Phenolic acids and other compounds identified in the ethanolic extracts of V. amurensis.
No. | Identified Compound | ARS | ART | KAL | PAK | RIK | VZK | SPB-1 | SPB-2 | SPB-3 | SPB-4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxybenzoic acids | |||||||||||
1. | Salvianolic acid D | + | + | + | + | + | |||||
2. | Salvianolic acid G | + | + | + | |||||||
3. | Ellagic acid [Benzoaric acid; Elagostasine] | + | + | ||||||||
4. | 4-Hydroxybenzoic acid | + | |||||||||
5. | Protocatechuic acid | + | |||||||||
6. | Gallic acid | + | |||||||||
7. | Syringic acid [Benzoic acid; Cedar acid] | + | |||||||||
8. | Salvianolic acid F | + | |||||||||
9. | Dihydroxybenzoyl-hexoside | + | |||||||||
Total number: | 1 | 1 | 0 | 1 | 0 | 6 | 2 | 3 | 1 | 1 | |
Hydroxycinnamic acids | |||||||||||
10. | Caftaric acid [cis-caftaric acid; 2-caffeoyl-L-tartaric acid; caffeoyl tartaric acid} | + | + | + | + | + | + | + | + | ||
11. | Di-O-caffeoylquinic acid | + | + | + | |||||||
12. | Sinapic acid [trans-Sinapic acid] | + | + | ||||||||
13. | Coutaric acid [Trans-p-Coumaroyltartaric acid] | + | + | ||||||||
14. | Fertaric acid [Fertarate] | + | + | ||||||||
15. | p-Coumaric acid-O-hexoside [Trans-p-Coumaric acid 4-glucoside] | + | + | ||||||||
16. | Caffeic acid-O-(sinapoyl-O-hexoside) | + | + | ||||||||
17. | p-Coumaric acid | + | |||||||||
18. | Caffeoylmalic acid | + | |||||||||
19. | 1-Caffeoyl-beta-D-glucose [Caffeic acid-glucoside] | + | |||||||||
20. | 5-O-(4’-O-p-coumaroyl glucosyl) quinic acid | + | |||||||||
21. | 3-p-coumaroyl-4-caffeoylquinic acid | + | |||||||||
22. | Coumaric acid derivative | + | |||||||||
Total number: | 0 | 1 | 0 | 3 | 2 | 2 | 1 | 1 | 0 | 4 | |
Other compounds | |||||||||||
23. | Ethyl gallate | + | + | + | + | + | + | + | + | + | |
24. | Malic acid | + | + | + | + | + | + | + | |||
25. | Hexose-hexose-N-acetyl | + | + | + | + | + | + | ||||
26. | Citric acid | + | + | + | + | + | |||||
27. | Quinic acid | + | + | + | + | + | |||||
28. | Galloyl glucose [Beta-Glucogallin; 1-O-Galloyl-Beta-D-Glucose] | + | + | + | + | + | |||||
29. | L-Tryptophan [Tryptophan; (S)-Tryptophan] | + | + | + | + | ||||||
30. | Cyclopassifloic acid glucoside | + | + | + | + | ||||||
31. | Indole-3-carboxylic acid | + | + | + | |||||||
32. | Myristoleic acid [Cis-9-Tetradecanoic acid] | + | + | + | |||||||
33. | Resveratrol [trans-Resveratrol; Stilbentriol] | + | + | + | |||||||
34. | Protocatechuic acid-O-hexoside | + | + | + | |||||||
35. | Palmatine [Berbericinine; Burasaine] | + | + | + | |||||||
36. | Polydatin [Piceid; trans-Piceid] | + | + | + | |||||||
37. | Procyanidin A-type dimer | + | + | + | |||||||
38. | Shikimic acid | + | + | ||||||||
39. | Esculetin [Cichorigenin; Aesculetin] | + | + | ||||||||
40. | 9-oxo-10E,12Z-octadecanoic acid [9-Oxo-ODE] | + | + | ||||||||
41. | Gallic acid hexoside | + | + | ||||||||
42. | Esculin [Aesculin; Esculoside; Polichrome] | + | + | ||||||||
43. | 1-O-Sinapoyl-beta-D-glucose | + | + | ||||||||
44. | Stigmasterol [Stigmasterin; Beta-Stigmasterol] | + | + | ||||||||
45. | Oleanoic acid | + | + | ||||||||
46. | Tartaric acid | + | |||||||||
47. | Umbelliferone | + | |||||||||
48. | Dihydroferulic acid | + | |||||||||
49. | Linolenic acid (Alpha-Linolenic acid; Linolenate) | + | |||||||||
50. | Nonadecadienoic acid | + | |||||||||
51. | Bilobalide [ (-)-Bilobalide] | + | |||||||||
52. | 3,7 -Dimethylquercetin | + | |||||||||
53. | Erucic acid (Cis-13-Docosenoic acid) | + | |||||||||
54. | Fraxin (Fraxetin-8-O-glucoside) | + | |||||||||
55. | Fucosterol [Fucostein; Trans-24-Ethylidenecholesterol] | + | |||||||||
56. | Phlorizin [Phloridzin; Phlorizoside; Floridzin: phlorrhizin; Phloretin 2’-Glucoside; Phloretin-O-hexoside] | + | |||||||||
57. | Ursolic acid | + | |||||||||
58. | Anmurcoic acid | + | |||||||||
59. | Dimethylellagic acid hexose | + | |||||||||
Total number | 7 | 15 | 7 | 11 | 7 | 17 | 11 | 11 | 5 | 5 |
ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
Table 4Locations of wild V. amurensis grape collection.
Code Name of the Sample | Location | Geographical Values | Soil Type |
---|---|---|---|
ARS | Floodplain of the Arsenyevka River, Primorsky Territory | N. 44°52′18″, E 133°35′12″ | brown grey bleached soils |
ART | The vicinity of Artem, Primorsky Territory | N 43°21′34″, E 132°11′19″ | yellow-brown soil |
KAL | The vicinity of Kalinovka, Primorsky Territory | N 43°07′27″, E 133°12′30″ | layered floodplains |
PAK | The Pakhtusov Islands, Peter the Great Bay, Sea of Japan | N 42°53′57″, E 131°38′45″ | yellow-brown soil |
RIK | Rikord Island, Peter the Great Bay, Sea of Japan | N 42°52′54″, E 131°40′06″ | yellow-brown earth soils |
VZK | The vicinity of Vyazemsky, Khabarovsk Territory | N 47°32′15″, E 134°45′20″ | podzolic brown forest heavy loamy soils |
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2021 by the authors.
Abstract
This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of V. amurensis grapes. In addition, several metabolites were newly annotated in V. amurensis. The highest diversity of phenolic compounds was identified in the samples of the V. amurensis grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultural grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
2 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
3 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
4 Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
5 Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey;
6 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia;
7 Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
8 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;