Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dissolved oxygen (DO) is an key factor for lipopeptide fermentation. To better understand the link between oxygen supply and lipopeptide productivity in Bacillus velezensis CMT-6, the mechanism of DO on the synthesis of antimicrobial lipopeptides by Bacillus velezensis CMT-6 was examined. The production of surfactin and iturin of CMT-6 was detected by liquid chromatography–mass spectrometer (LC-MS) under different DO conditions and transcriptome analysis was performed. At 100 and 200 rpm, the lipopeptides productions were 2753.62 mg/L and 3452.90 mg/L, respectively. There was no significant change in the yield of iturin but that of surfactin increased by 64.14%. Transcriptome analysis revealed that the enriched differential genes were concentrated in the GO term of oxidation–reduction process. The marked enrichment of the lipopeptides synthesis pathway, including microbial metabolism in diverse environments and carbon metabolism in the two-component system, were observed. More importantly, the expression levels of the four surfactin synthetase genes increased at higher DO, however, the iturin synthetase gene expression did not. Furthermore, modular surfactin synthetase was overexpressed (between 9- and 49-fold) at 200 rpm but not at 100 rpm, which is suggestive of efficient surfactin assembly resulting in surfactin overproduction. This study provides a theoretical basis for constructing engineering strains with high lipopeptide production to adapt to different DO.

Details

Title
LC-MS and Transcriptome Analysis of Lipopeptide Biosynthesis by Bacillus velezensis CMT-6 Responding to Dissolved Oxygen
Author
Deng, Qi 1 ; Lin, Haisheng 1   VIAFID ORCID Logo  ; Hua, Meifang 1 ; Sun, Lijun 1   VIAFID ORCID Logo  ; Pu, Yuehua 2 ; Liao, Jianmeng 3 ; Fang, Zhijia 1   VIAFID ORCID Logo  ; Zhong, Saiyi 1 ; Gooneratne, Ravi 4   VIAFID ORCID Logo 

 Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China 
 Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China 
 Zhanjiang Institute of Food and Drug Control, Zhanjiang 524022, China 
 Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand 
First page
6822
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728515758
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.