Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intensified complementary metal-oxide semiconductor (ICMOS) sensors can capture images under extremely low-light conditions (≤0.01 lux illumination), but the results exhibit spatially clustered noise that seriously damages the structural information. Existing image-denoising methods mainly focus on simulated noise and real noise from normal CMOS sensors, which can easily mistake the ICMOS noise for the latent image texture. To solve this problem, we propose a low-light cross-scale transformer (LL-CSFormer) that adopts multi-scale and multi-range learning to better distinguish between the noise and signal in ICMOS sensing images. For multi-scale aspects, the proposed LL-CSFormer designs parallel multi-scale streams and ensures information exchange across different scales to maintain high-resolution spatial information and low-resolution contextual information. For multi-range learning, the network contains both convolutions and transformer blocks, which are able to extract noise-wise local features and signal-wise global features. To enable this, we establish a novel ICMOS image dataset of still noisy bursts under different illumination levels. We also designed a two-stream noise-to-noise training strategy for interactive learning and data augmentation. Experiments were conducted on our proposed ICMOS image dataset, and the results demonstrate that our method is able to effectively remove ICMOS image noise compared with other image-denoising methods using objective and subjective metrics.

Details

Title
LL-CSFormer: A Novel Image Denoiser for Intensified CMOS Sensing Images under a Low Light Environment
Author
Zhang, Xin  VIAFID ORCID Logo  ; Wang, Xia; Changda Yan
First page
2483
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819479133
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.