Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A local particle filter (LPF) is introduced that outperforms traditional ensemble Kalman filters in highly nonlinear/non-Gaussian scenarios, both in accuracy and computational cost. The standard sampling importance resampling (SIR) particle filter is augmented with an observation-space localization approach, for which an independent analysis is computed locally at each grid point. The deterministic resampling approach of Kitagawa is adapted for application locally and combined with interpolation of the analysis weights to smooth the transition between neighboring points. Gaussian noise is applied with magnitude equal to the local analysis spread to prevent particle degeneracy while maintaining the estimate of the growing dynamical instabilities. The approach is validated against the local ensemble transform Kalman filter (LETKF) using the 40-variable Lorenz-96 (L96) model. The results show that (1) the accuracy of LPF surpasses LETKF as the forecast length increases (thus increasing the degree of nonlinearity), (2) the cost of LPF is significantly lower than LETKF as the ensemble size increases, and (3) LPF prevents filter divergence experienced by LETKF in cases with non-Gaussian observation error distributions.

Details

Title
A local particle filter for high-dimensional geophysical systems
Author
Penny, Stephen G 1 ; Miyoshi, Takemasa 2   VIAFID ORCID Logo 

 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA; National Centers for Environmental Prediction, College Park, MD, USA; RIKEN Advanced Institute for Computational Science, Kobe, Japan 
 RIKEN Advanced Institute for Computational Science, Kobe, Japan; Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA 
Pages
391-405
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
1023-5809
e-ISSN
1607-7946
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414684804
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.