Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon capture and storage (CCS) is an effective means to achieve the goals of carbon peaking and carbon neutrality. To improve the operating economics and low-carbon emission of an integrated energy system, the strong exothermic property of power-to-gas is utilized for heat recovery and injection into the heat network. This expands the adjustable range of electric output of combined heat and power (CHP) units which will improve wind power accommodation. The CO2 produced by the coal-fired unit is captured using post-combustion carbon capture technology, and then stored and used to manufacture methane, in order to realize the electric–gas–heat integrated energy system coupled with power-to-gas. Based on the ladder-type carbon trading mechanism, a low-carbon economic dispatch model of integrated energy system is proposed, which considers the incorporation of power-to-gas heat recovery and carbon capture and storage. The objective function is to minimize the total operation cost of the system. The model is simulated in the revised IEEE 39-bus power network, Belgium 20-node gas network and 6-node heat network by CPLEX solver and simulation results verify the effectiveness of the proposed model.

Details

Title
Low Carbon Economic Dispatch of Integrated Energy System Considering Power-to-Gas Heat Recovery and Carbon Capture
Author
Chen, Wenjin 1 ; Zhang, Jun 1 ; Li, Feng 2 ; Zhang, Ruoyi 1 ; Sennan Qi 3 ; Li, Guoqing 4 ; Wang, Chong 4 

 State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310063, China 
 China Electric Power Research Institute, Nanjing 210003, China 
 Zhuji Power Supply Company of State Grid Zhejiang Electric Power Co., Ltd., Zhuji 311800, China 
 College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China 
First page
3472
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806517518
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.