Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Petroleum products are hazardous both for humans and nature. Diesel oil is one of the main contaminants of land but also of sea, during its transportation. Currently, there are many different clean-up techniques for petroleum products. One of the most common is adsorption by adsorbent materials. Although adsorption is an eco-friendly and cost-effective approach, it lacks efficiency. The present study investigates the performance of low-cost activated carbon, derived from potato peels and activated under different temperature conditions, from 350 °C to 800 °C. The yield of activated carbon decreases with the increase in the carbonization temperature. However, the sample prepared at 600 °C shows an oil sorption capacity of 72 g/g, which is the highest of all samples. Nitrogen adsorption characterization reveals that this specific sample has the highest specific surface (SSA) area of 1052 m2/g and total a pore volume of 2.959 cm3/g, corresponding to a 94% and 77% increase compared to the sample prepared at 350 °C. Oil sorption kinetics experiments show that, for all samples, the maximum uptake is reached after 1h. Oil uptake was also investigated under realistic conditions by introducing the best performance activated carbon to an oil/seawater system, and the outcome does not show a significant decrease in the oil sorption. The outcomes of this study indicate that low-cost adsorbents from agricultural by-products have strong potential as an oil spill response technique.

Details

Title
Low-Cost Activated Carbon for Petroleum Products Clean-Up
Author
Kosheleva, Ramonna I; Kyzas, George Z  VIAFID ORCID Logo  ; Kokkinos, Nikolaos C  VIAFID ORCID Logo  ; Mitropoulos, Athanasios C
First page
314
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633049434
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.