Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lithology has such an important effect on the sustainability of soil carbon (C) pools. Forests are an important part of terrestrial C sinks; yet, it is unclear whether their soil carbon sensitivity to temperature changes is regulated by lithology, especially in karst ecosystems, which are widely distributed globally. Along a climate gradient in the subtropical region of southwest China, we compared the contents of soil organic C (SOC) and total N (TN) in karst and non-karst forests. The data were analyzed and processed using ANOVA, regression analysis, and random forest. The results showed that the karst forests had significantly higher SOC and TN contents but lower ratio of SOC to TN (C:N) than non-karst forests, mainly because of the higher soil calcium (Ca) content and microbial biomass. With rising mean annual temperature (MAT), SOC and TN contents in non-karst forests significantly decreased, whereas in karst forests they were not correlated with MAT; while, the opposite was true for C:N. In karst forests, soil Ca constrain warming induced decomposition of SOC and TN by forming stable complexes with SOM through exchangeable Ca, and by promoting aggregate stability through the role of calcium carbonate. The correlation between δ13C and the logarithm of SOC concentration also supported that conclusion. In karst forests compared to non-karst forests, soil C pools are larger and less sensitive to regional temperature change. Nevertheless, climate warming may still accelerate soil C loss in karst forests by increasing microbial C limitation. Thus, soil C sequestration potential and loss risk coexist in karst areas. The ratio of SOC to TN (C:N) is regulated through appropriate management measures in the process of karst vegetation restoration, thus promoting long-term stable sequestration of soil carbon pools.

Details

Title
Lower Sensitivity of Soil Carbon and Nitrogen to Regional Temperature Change in Karst Forests Than in Non-Karst Forests
Author
Li, Yunfan 1 ; Yang, Rong 2 ; Hu, Peilei 3 ; Xiao, Dan 3 ; Wang, Zhongcheng 1 ; Zhang, Wei 3   VIAFID ORCID Logo  ; Wang, Kelin 3   VIAFID ORCID Logo 

 Forestry College, Central South University of Forestry and Technology, Changsha 410004, China 
 University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China 
 Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China 
First page
355
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779536242
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.