Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There are limited studies on the semantic segmentation of high-resolution synthetic aperture radar (SAR) images in building areas due to speckle noise and geometric distortion. For this challenge, we propose the large receptive field feature fusion network (LRFFNet), which contains a feature extractor, a cascade feature pyramid module (CFP), a large receptive field channel attention module (LFCA), and an auxiliary branch. SAR images only contain single-channel information and have a low signal-to-noise ratio. Using only one level of features extracted by the feature extractor will result in poor segmentation results. Therefore, we design the CFP module; it can integrate different levels of features through multi-path connection. Due to the problem of geometric distortion in SAR images, the structural and semantic information is not obvious. In order to pick out feature channels that are useful for segmentation, we design the LFCA module, which can reassign the weight of channels through the channel attention mechanism with a large receptive field to help the network focus on more effective channels. SAR images do not include color information, and the identification of ground object categories is prone to errors, so we design the auxiliary branch. The branch uses the full convolution structure to optimize training results and reduces the phenomenon of recognizing objects outside the building area as buildings. Compared with state-of-the-art (SOTA) methods, our proposed network achieves higher scores in evaluation indicators and shows excellent competitiveness.

Details

Title
LRFFNet: Large Receptive Field Feature Fusion Network for Semantic Segmentation of SAR Images in Building Areas
Author
Peng, Bo 1 ; Zhang, Wenyi 2 ; Hu, Yuxin 2 ; Chu, Qingwei 2 ; Li, Qianqian 2 

 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China 
 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China 
First page
6291
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756781452
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.