Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most object detection methods use rectangular bounding boxes to represent the object, while the representative points network (RepPoints) employs a point set to describe the object. The RepPoints can provide more fine-grained localization and facilitates classification. However, it ignores the difference between localization and classification tasks. Therefore, a lightweight RepPoints with decoupling of the sampling point set (LRP-DS) is proposed in this paper. Firstly, the lightweight MobileNet-V2 and Feature Pyramid Networks (FPN) is employed as the backbone network to realize the lightweight network, rather than the Resnet. Secondly, considering the difference between classification and localization tasks, the sampling points of classification and localization are decoupled, by introducing classification free sampling method. Finally, due to the introduction of the classification free sampling method, the problem of the mismatch between the localization accuracy and the classification confidence is highlighted, so the localization score is employed to describe the localization accuracy independently. The final network structure of this paper achieves 73.3% mean average precision (mAP) on the VOC07 test dataset, which is 1.9% higher than original RepPoints with the same backbone network MobileNetV2 and FPN. Our LRP-DS has a detection speed of 20FPS for the input image of (1000, 600), on RTX2060 GPU, which is nearly twice as fast as the backbone network of ResNet50 and FPN. Experimental results show the effectiveness of our method.

Details

Title
LRP-DS: Lightweight RepPoints with Decoupled Sampling Point Set
Author
Wang, Jinchao; Weng, Libo
First page
5876
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549259952
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.