Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A crucial component of multimodal transportation networks and long-distance travel chains is the forecasting of transfer passenger flow between integrated hubs in urban agglomerations, particularly during periods of high passenger flow or unusual weather. Deep learning is better suited to managing massive amounts of traffic data and predicting extended time series. In order to solve the problem of gradient explosion or gradient disappearance that recurrent neural networks are prone to when dealing with long time sequences, this study used a transformer prediction model to estimate short-term transfer passenger flow between two integrated hubs in an urban agglomeration and a long short-term memory network to incorporate previous historical data. The experimental analysis uses two sets of transfer passenger data from the Beijing-Tianjin-Hebei urban agglomeration, collected every 30 min in May 2021 on the transfer corridors between an airport and a high-speed railway station. The findings demonstrate the high adaptability and good performance of the suggested model in passenger flow forecasting. The suggested model and forecasting outcomes assist management in making capacity adjustments in time to correspond with changes, enhance the effectiveness of multimodal transportation systems in urban agglomerations and significantly enhance the service of long-distance multimodal passenger travel.

Details

Title
LSTM-Based Transformer for Transfer Passenger Flow Forecasting between Transportation Integrated Hubs in Urban Agglomeration
Author
Yue, Min 1   VIAFID ORCID Logo  ; Ma, Shuhong 2 

 Department of Transportation Engineering, College of Transportation Engineering, Chang’an University, Xi’an 710064, China 
 Department of Transportation Engineering, College of Transportation Engineering, Chang’an University, Xi’an 710064, China; Key Laboratory of Transport Industry of Management, Control and Cycle Repair Technology for Traffic Network Facilities in Ecological Security Barrier Area, Chang’an University, Xi’an 710064, China 
First page
637
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761171834
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.