Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 http://www.nanoscalereslett.com/content/8/1/141
NANO EXPRESS Open Access
Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties
Younes Hanifehpour1,2*, Sang Woo Joo1* and Bong-Ki Min3
Abstract
Lu3+/Yb3+ and Lu3+/Er3+ co-doped Sb2Se3 nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the LnxLn0xSb22xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x = 0.00 0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and transmission electron microscopy images show that co-doping of Lu3+/Yb3+ ions in the lattice of Sb2Se3 produces nanorods, while that in Lu3+/Er3+ produces nanoparticles, respectively. The electrical conductivity of co-doped Sb2Se3 is higher than that of the pure Sb2Se3 and increases with temperature. By increasing the concentration of Ln3+ions, the absorption spectrum of Sb2Se3 shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb2Se3, emission spectra of co-doped materials show other emission bands originating from f-f transitions of the Yb3+ ions.
Keywords: Co-doped, Nanomaterial, Luminescent, Electrical conductivity, Hydrothermal
Background
Nanosized semiconductor materials have drawn much research attention because their physical and chemical properties, due to size quantization effect, dramatically change and, in most case, are improved as compared with their bulk counterparts [1-3]. Rare earth-substituted compounds with various compositions have become an increasingly important research topic in diverse areas, such as luminescent device, light-emitting displays, biological labeling, and imaging [4-6], due to the introduction of dopant levels within the bandgap and modification of the band structure. In addition, significant efforts have been devoted to enhance the activity of wide bandgap photocatalysts by doping for environmental remediation [7,8]. Semiconductor selenides find applications as laser
materials, optical filters, sensors, and solar cells. Antimony selenide, an important member of these V2VI3 compounds, is a layer-structured semiconductor of ortho-rhombic crystal structure and exhibits good photovoltaic properties and high thermoelectric power, which allows possible applications for optical and thermoelectronic cooling devices [9-11]. The research of impurity effects or doping agents on the physical properties of Sb2Se3 is interesting both for basic and applied research. Doping of some transition metal and lanthanide to the lattice of metal chalcogenides has been investigated [12-20]. The incorporation of large electropositive ions such as lanthanides into metal chalcogenide frameworks is expected to affect the electronic properties of that framework. In this work, we report the preparation, structural, electrical, and optical properties of Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide via co-reduction method at hydrothermal condition.
Methods
All chemicals were of analytical grade and were used without further purification. Gray selenium (1 mmol) and
* Correspondence: mailto:[email protected]
Web End [email protected] ; mailto:[email protected]
Web End [email protected]
1School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, South Korea
2Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, IranFull list of author information is available at the end of the article
2013 Hanifehpour et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0
Web End =http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 2 of 8 http://www.nanoscalereslett.com/content/8/1/141
NaOH (5 mmol) were added to distilled water (60 mL) and stirred well for 10 min at room temperature. Afterwards, hydrazinium hydroxide (2 mL, 40 mmol), SbCl3 (1.98, 1.96,1.94, and 1.92 mmol) and Ln2O3 (0.00, 0.01, 0.02, and 0.04 mmol) (Ln: Lu3+, Yb3+, Er3+) based on the molecular formula LnxLn0xSb22xSe3 (0 x 0.04) were added, and the mixture was transferred to a 100-mL Teflon-lined auto-clave. The autoclave was sealed, maintained at 180C for 48 h, and then cooled to room temperature. The optimum conditions for this reaction are pH = 12, temperature = 180C, and reaction time = 48 h. The black precipitate obtained was filtered and washed with ethanol and water. It was dried at room temperature. Yields for the products were 75% to 85%. Phase identification was performed by powder X-ray diffraction (XRD, D5000 Siemens AG, Munich, Germany) with Cu K radiation. Cell parameters were calculated using the Celref program (CCP14, London, UK) from powder XRD patterns, and reflections have been determined and fitted using a profile fitting procedure with the WinXPOW program (STOE & CIE GmbH, Darmstadt, Germany). The reflections observed in 2 = 4 to 70 were used for the lattice parameter determination. The morphology of materials was examined by scanning electron microscopy (SEM, Hitachi S-4200, Hitachi High-Tech, Minato-ku, Tokyo, Japan). A linked
ISIS-300 Oxford EDS detector (Oxford Instruments plc, Oxfordshire, UK) was used for elemental analyses. The high-resolution transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) pattern were recorded by a Cs-corrected HRTEM (JEM-2200FS, JEOL Ltd., Akishima, Tokyo, Japan) operated at 200 kV. Photoluminescence measurements were carried out using a Spex FluoroMax3 spectrometer (HORIBA Jobin Yvon Inc., Edison, NJ, USA) after dispersing a trace amount of sample via ultrasound in distilled water. Four-point probe method was used for the measurement of electrical and thermoelectrical resistivity of samples. A small oven was needed for the variation of temperature of the samples from the room temperature to about 200C (maximum). A small chip with 1-mm thickness and 7-mm length was used for this analysis.
Results and discussion
The powder XRD patterns (Figure 1) of LuxYbxSb22xSe3 samples indicate that the Lu3+/Yb3+ co-doped antimony selenide has the same orthorhombic structure as Sb2Se3 and that single-phase Sb2Se3 is retained at lower doping concentrations of Lu3+/Yb3+. All the peaks in Figure 1 can be attributed to the orthorhombic phase of Sb2Se3
Figure 1 Powder XRD pattern of LuxYbxSb2xSe3. Curve a: x = 0.0, curve b: x = 0.04, and curve c = impurity phase.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 3 of 8 http://www.nanoscalereslett.com/content/8/1/141
with Pbnm space group and lattice parameters a = 11.62 , b = 11.76 , and c = 3.95 (JCPDS card file 721184). For doping levels higher than x = 0.04 for Lu3+ and Yb3+, additional unknown phases were ob-served (curve c of Figure 1). In the case of Lu3+/Er3+ co-doped compounds, the intensity of some peaks has been changed, and for doping levels higher than of x = 0.04 for Lu3+ and Er3+, additional unknown phases were also observed (see Additional file 1).
In addition, a little shift toward the low angle was seen in the diffraction peaks of the co-doped Sb2Se3 compared with those of the undoped Sb2Se3 nanocrystals. This suggests that the larger lanthanide ions substitute the antimony ions, resulting in increased lattice constants. As expected, the EDX and ICP analyses of the product confirm the ratio of Sb/Se/Ln/Ln0 (see Figure 2).
The cell parameters of the synthesized materials were calculated from the XRD patterns. With increasing dopant content (x), the lattice parameters were increased for
these materials, as shown in Figure 3. This trend is similar to the previous reported Ln-doped Sb2Se3 compounds [16-20].
Figure 4a shows SEM images of Lu0.04Yb0.04Sb1.92Se3
nanorods with 3-m lengths and thicknesses of 70 to 200 nm. Co-doping of Lu3+ and Yb3+ into the structure of Sb2Se3 does not change the morphology of the Sb2Se3 nanorods, but doping of Lu3+ and Er3+ into the structure of Sb2Se3 changes the morphology from rods to particles. The diameter of Lu0.04Er0.04Sb1.92Se3 particles is
around 25 nm (Figure 4b).Figure 5a shows TEM image of as-prepared Lu0.04-
Yb0.04Sb1.92Se3 nanorods. The SAED pattern and typical HRTEM image recorded from the same nanorods of Lu0.04Yb0.04Sb1.92Se3 is shown in Figure 5b,c. The crystal
lattice fringes are clearly observed, and the average distance between the neighboring fringes is 0.82 nm, corresponding to the [1-10] plane lattice distance of the orthorhombic-structured Sb2Se3, which suggests that
Figure 2 EDX patterns of LnxLn0xSb22xSe3 compounds.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 4 of 8 http://www.nanoscalereslett.com/content/8/1/141
Figure 3 The lattice constants of co-doped Sb2Se3 dependent upon Ln3+ doping on Sb3+ sites.
Lu0.04Yb0.04Sb1.92Se3 nanorods grow along the [1] direc
tion. The HRTEM image and SAED pattern are the same for Sb2Se3 and show similar growth direction (see the Additional file 1).
Figure 6a,b shows the TEM image and SAED patterns of Lu0.04Er0.04Sb1.92Se3 nanoparticles obtained in ethanol/
water media that confirms the result through SEM images and shows high crystallinity of the sample.
In doped semiconductors, two types of emissions are responsible for dopant (impurity) luminescence. One can be observed only upon direct excitation of the dopant. The other type is obtained if energy transfer from
Figure 4 SEM images of co-doped antimony selenide. (a) Lu0.04Yb0.04Sb1.92Se3 nanorods (b) Lu0.04Er0.04Sb1.92Se3 nanoparticles.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 5 of 8 http://www.nanoscalereslett.com/content/8/1/141
Figure 5 TEM (a), SAED pattern (b), and HRTEM image (c) of Lu0.04Yb0.04Sb1.92Se3 nanorods.
Figure 6 TEM (a) and SAED pattern (b) of Lu0.04Er0.04Sb1.92Se3 nanoparticle.
host to dopant occurs. Binary compounds such as Sb2Se3 and its alloys are thermoelectric materials with layered crystalline structures. These materials have been investigated for the direct conversion of thermal energy to electric energy, and they are specially used for electronic refrigeration [9]. The four-point probe method was used for the measurement of electrical and thermoelectrical resistivity of samples (Figure 7).
At room temperature, the electrical resistivity of pure Sb2Se3 was of the order of 0.2 m; in the case of
Lu0.04Yb0.04Sb1.92Se3, the minimum value of electrical re
sistivity is 0.009 m, and for Lu0.04Er0.04Sb1.92Se3, it is
0.032 m. With the increase in lanthanide concentration, the electrical resistivity of synthesized nanomaterials decreased obviously (Figure 8a).
The temperature dependence of the electrical resistivity for co-doped Sb2Se3 nanomaterials between 290 and 350 K is shown in Figure 8b. Electrical resistivity decreases linearly with temperature, and the minimum value for Lu0.04Yb0.04Sb1.92Se3 was measured as 0.0006
m and for Lu0.04Er0.04Sb1.92Se3 as 0.005 m. Two fac
tors that include the overlapping of wave functions of electrons in doped Sb2Se3 and that acting as a charge carrier due to lanthanide atomic structure (having empty f orbitals) are important reasons for decreasing electrical
Figure 7 Schematic of four-point probe.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 6 of 8 http://www.nanoscalereslett.com/content/8/1/141
Figure 8 Electrical (a) and thermoelectrical (b) resistivity of co-doped Sb2Se3 compounds.
Figure 10 Emission spectra for co-doped antimony selenide at room temperature (exc =470 nm). (a) Lu0.04Yb0.04Sb1.92Se3 (b) Lu0.04Er0.04Sb1.92Se3.
resistivity. The obtained data shows higher electrical resistivity for co-doped samples in comparison with doped samples in the case of Lu3+, Yb3+ and Er3+ doped Sb2Se3 [16,17]. The measurements indicate that the co-doping materials have higher electrical and thermoelectrical conductivity than the doped compounds in spite of lower lanthanide content [16-20]. Comparing both doped and co-doped data, the combining energy levels of the two lanthanides and the overlapping of wave functions of electrons in two different lanthanides are responsible for the difference between the obtained results. Among the co-
doped compounds, Lu3+/Yb3+-doped Sb2Se3 has the higher electrical conductivity.
UVvis spectra of Lu0.04Yb0.04Sb1.92Se3 are shown in
Figure 9a. The absorption spectra reveal the existence of Sb2Se3 and Lu3+ ions (in the visible domain) and Yb3+ ions in the near-IR domain. By increasing the concentration of Ln3+ ions, the absorption spectrum of Sb2Se3 shows red shifts and some intensity changes (see
Figure 9 Absorption spectra of co-doped antimony selenide at room temperature. (a) Lu0.04Yb0.04Sb1.92Se3 (b) Lu0.04Er0.04Sb1.92Se3.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 7 of 8 http://www.nanoscalereslett.com/content/8/1/141
Additional file 1). The Lu3+ ion has no excited 4f levels; therefore, the peaks between 500 and 600 nm can be assigned to the ionization of Lu 5d orbitals and lattice of Sb2Se3.[21,22], and the peak at 830 nm can be assigned to the 2F7/22F5/2 transition (f-f transitions) of the Yb3+ ions [23].
For Lu0.04Er0.04Sb1.92Se3, the transition of the Er3+ ions
is not observed because of instrument limitation. The peaks between 500 and 620 nm can then be assigned to the lattice of Sb2Se3 (Figure 9b). The difference between absorption patterns of compounds is related to various defects created in the lattice. There is a red shift in the doped materials in comparison with pure Sb2Se3 because of the smaller nanoparticles of Sb2Se3, in which the bandgap is higher than the doped nanomaterials [24,25]. It is well known that the fundamental absorption can be used to determine the nature and value of the optical bandgap of the nanoparticles. The bandgap energies of samples were estimated from the absorption limit. The calculated bandgap is 2.43 eV for Lu0.04Yb0.04Sb1.92Se3
and 2.36 eV for Lu0.04Er0.04Sb1.92Se3.
Figure 10a exhibited the room-temperature photo-luminescence emission spectra of Lu0.04Yb0.04Sb1.92Se3.
The Lu3+ 5d-4f luminescence is almost completely quenched at temperatures T > 200 K. The Lu3+ ion has
no excited 4f levels, and therefore, thermal quenching of Lu3+ 5d-4f luminescence cannot have been caused by nonradiative transitions to 4f levels and should be attributed to the thermally activated ionization of 5d electrons to the conduction band [21,22]. The peaks at 500 to 700 nm can then be assigned to the crystal structure of Sb2Se3, and its defects and the band at 880 nm is related to 2F5/22F7/2 transition of Yb3+ions.
In case the of Lu0.04Er0.04Sb1.92Se3, intra-4f Er3+ transi
tions of the 4I11/2 and 4I13/2 levels to the ground state (4I15/2) are expected around 1.54 m. These could, however, not be determined due to equipment limitations[24]. Therefore, emission bands at 550 to 700 nm are related to the crystal structure of Sb2Se3 (Figure 10b). The optical properties of co-doped compounds considering absorbance and photoluminescence spectra show similar f-f transitions in the case of Yb-doped materials and similar results for Lu- and Er-doped materials as obtained for Ln-doped Sb2Se3. We expect that these materials can be good candidates as novel photocatalysts due to their modified bandgaps by doping with lanthanides. Indeed, doping is the best way for the modification of semiconductors for special uses such as photocatalysts in order for the degradation of azo dye and organic pollutant to take place.
Conclusions
New thermoelectric Ln2xSb22xSe3 (Ln: Lu3+/Yb3+ and Lu3+/Er3+)-based nanomaterials were synthesized by a
simple hydrothermal method. The cell parameters were increased for compounds upon increasing the dopant content (x). According to the SEM and TEM images, different morphologies were seen in co-doped Sb2Se3.
The HRTEM image and SAED pattern show similar growth [1] directions for Lu3+/Yb3+ co-doped like Sb2Se3 nanorods. Lanthanide doping promotes the electrical conductivity of Sb2Se3 as well as thermoelectrical conductivity. UVvis absorption and emission spectroscopy reveals mainly the electronic transitions of the Ln3+ ions
in the case of Yb3+-doped nanomaterials.
Additional file
http://www.biomedcentral.com/content/supplementary/1556-276X-8-141-S1.doc
Web End =Additional file 1: XRD patterns of LuxErxSb22xSe3, TEM, HRTEM images, SAED pattern of Sb2Se3 nanorods, absorption spectra of Lu0.02Yb0.02Sb1.96Se3, Lu0.01Yb0.01Sb1.98Se3, and Lu0.02Er0.02Sb1.96Se3 are provided. Figure S1. Powder X-ray diffraction pattern of LuxErxSb2xSe3 (x = 0.02). Figure S2. Powder X-ray diffraction pattern of LuxErxSb2xSe3(x = 0.04). Figure S3. Powder X-ray diffraction pattern of unknown LuxErxSb2xSe3 phase. Figure S4. TEM image of Sb2Se3 nanorods.
Figure S5. HRTEM image of the Sb2Se3 nanorods. Figure S6. SAED Pattern of the Sb2Se3 nanorods. The SAED zone axis is [1]. Figure S7. Absorption spectra of Lu0.02Yb0.02Sb1.96Se3 nanorods at room temperature.
Figure S8. Absorption spectra of Lu0.01Yb0.01Sb1.98Se3 nanorods at room temperature. Figure S9. Absorption spectra of Lu0.02Er0.02Sb1.96Se3 nanoparticles at room temperature.
Competing interestsThe authors declare that they have no competing interests.
Authors contributionsYH carried out the experiments and drafted the manuscript. SWJ directed the study and provided the analyses. BM carried out the experimental analysis. All authors read and approved the final manuscript.
AcknowledgmentsThis work is funded by the World Class University grant R32-2008-000-20082-0 of the National Research Foundation of Korea.
Author details
1School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, South Korea. 2Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. 3Center for Research Facilities, Yeungnam University, Gyongsan 712-749, South Korea.
Received: 18 February 2013 Accepted: 11 March 2013 Published: 27 March 2013
References1. Calvert P: Rough guide to the nanoworld. Nature 1996, 383:300301.2. Weller H: Quantized semiconductor particles: a novel state of matter for materials science. Adv Mater 1993, 5:8895.
3. Alivisatos AP: Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271:933937.
4. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463:10611065.
5. Tachikawa T, Ishigaki T, Li J, Fujitsuka M: Defect mediated photoluminescence dynamics of Eu+3-doped TiO2 nanocrystals revealed at the single particle or single aggregate level. Angew Chem Int Ed 2008, 47:53485352.
6. Sun Y, Chen Y, Tian LJ, Yu Y, Kong XG: Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. J Lumin 2008, 128:1521.
Hanifehpour et al. Nanoscale Research Letters 2013, 8:141 Page 8 of 8 http://www.nanoscalereslett.com/content/8/1/141
7. Batzill M, Morales EH, Diebold U: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase.
Phys Rev Lett 2006, 96:0261034.8. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y: Visible-light photocatalysis in nitrogen- doped titanium oxides. Science 2001, 293:269271.
9. Chim T, Chun B: Microstructure and thermoelectric properties of n- and p-type Bi2Te3 alloys by rapid solidification processes. J Alloys Compd 2007, 437:225230.
10. Qiu X, Burda C, Fu R, Pu L, Chen H, Zhu J: Heterostructured Bi2Se3 nanowires with periodic phase boundaries. J Am Chem Soc 2004, 126:1627616277.
11. Mastrovito C, Lekse JW, Aitken JA: Rapid solid-state synthesis of binary group 15 chalcogenides using microwave irradiation. J Solid State Chem 2007, 180:32623270.
12. Larson P, Lambrecht RL: Electronic structure and magnetism in Bi2Te3, Bi2Se3, and Sb2Te3 doped with transition metals (TiZn). Phys Rev B 2008, 78:195207.
13. Jancek P, Drasar C, Lostk P, Vejpravov J: Transport, magnetic, optical and thermodynamic properties of Bi2xMnxSe3 single crystals. Physica B 2008, 403:35533558.
14. Lostak P, Drasar C, Klichova I, Cernohorsky T: Properties of Bi2Se3 single crystals doped with Fe atom. Phys Status Solidi B 1997, 200:289296.15. Alemi A, Klein A, Meyer G, Dolatyari M, Babalou A: Synthesis of new LnxBi2
xSe3 (Ln: Sm3+, Eu3+, Gd3+, Tb3+) nanomaterials and investigation of their optical properties. Z Anorg Allg Chem 2011, 637:8793.16. Alemi A, Hanifehpour Y, Joo SW, Min B: Synthesis of novel LnxSb2xSe3 (Ln: Lu3+, Ho3+, Nd3+) nanomaterials via co-reduction method and investigation of their physical properties. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 390:142148.
17. Alemi A, Hanifehpour Y, Joo SW, Khandar A, Morsali A, Min B: Co-reduction synthesis of new LnxSb2xS3 (Ln: Nd3+, Lu3+, Ho3+) nanomaterials and investigation of their physical properties. Physica B 2011, 406:28012806.
18. Alemi A, Hanifehpour Y, Joo SW, Khandar A, Morsali A, Min B: Synthesis and characterization of new LnxSb2xSe3 (Ln: Yb3+, Er3+) nanoflowers and their physical properties. Physica B 2012, 407:3843.
19. Alemi A, Hanifehpour Y, Joo SW, Min B: Structural studies and physical properties of novel Sm3+-doped Sb2Se3 nanorods. Physica B 2011, 406:38313835.
20. Alemi A, Hanifehpour Y, Joo SW, Min B: Co-reduction synthesis, spectroscopic and structural studies of novel Gd3+-doped Sb2Se3 nanorods. J Nanomater 2012. doi:http://dx.doi.org/10.1155/2012/983150
Web End =10.1155/2012/983150 .
21. Makhov VN, Batygov SK, Dmitruk LN, Kirm M, Vielhauer S: VUV 5d4f luminescence of Gd3+ and Lu3+ ions in the CaF2 host. Phys Solid State 2008, 50:16251630.
22. Zych E, Hreniak D, Strek W: Spectroscopic properties of Lu2O3:Eu3+ nano-crystalline powders and sintered ceramics. J Phys Chem B 2002, 106:38053812.
23. Loh E: 4fn4fn15d Spectra of rare-earth ions in crystals. Phys Rev 1968, 175:533536.
24. Strohheofer C, Polman A: Absorption and emission spectroscopy in Er3
+-Yb3+ doped aluminum oxide waveguides. Opt Mater 2003, 21:705712.25. Hoven GN, Elsken JA, Polman A, Dam C, Uffelen K, Smit MK: Absorption and emission cross sections of Er3+ in Al2O3 waveguides. Appl Opt 1997, 36:33383341.
doi:10.1186/1556-276X-8-141
Cite this article as: Hanifehpour et al.: Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties. Nanoscale Research Letters 2013 8:141.
Submit your manuscript to a journal and benet from:
7 Convenient online submission7 Rigorous peer review7 Immediate publication on acceptance7 Open access: articles freely available online 7 High visibility within the eld7 Retaining the copyright to your article
Submit your next manuscript at 7 springeropen.com
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
The Author(s) 2013
Abstract
Lu^sup 3+^/Yb^sup 3+^ and Lu^sup 3+^/Er^sup 3+^ co-doped Sb^sub 2^Se^sub 3^ nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the Ln^sub x^Ln^sup '^ ^sub x^Sb^sub 2-2x^Se^sub 3^ Ln: Lu^sup 3+^/Yb^sup 3+^ and Lu^sup 3+^/Er^sup 3+^ crystals (x = 0.00 - 0.04) are isostructural with Sb^sub 2^Se^sub 3^. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and transmission electron microscopy images show that co-doping of Lu^sup 3+^/Yb^sup 3+^ ions in the lattice of Sb^sub 2^Se^sub 3^ produces nanorods, while that in Lu^sup 3+^/Er^sup 3+^ produces nanoparticles, respectively. The electrical conductivity of co-doped Sb^sub 2^Se^sub 3^ is higher than that of the pure Sb^sub 2^Se^sub 3^ and increases with temperature. By increasing the concentration of Ln^sup 3+^ions, the absorption spectrum of Sb^sub 2^Se^sub 3^ shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb^sub 2^Se^sub 3^, emission spectra of co-doped materials show other emission bands originating from f-f transitions of the Yb^sup 3+^ ions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer