Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.

Details

Title
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer
Author
Wang, Wei 1   VIAFID ORCID Logo  ; Wang, Xiangjun 1 ; Yao, Feng 2 ; Huang, Chao 3   VIAFID ORCID Logo 

 Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China 
 Thoracic Oncology Institute, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China 
 Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming 650500, China 
First page
12270
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728487508
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.