Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Existing methods for building extraction from remotely sensed images strongly rely on aerial or satellite-based images with very high resolution, which are usually limited by spatiotemporally accessibility and cost. In contrast, relatively low-resolution images have better spatial and temporal availability but cannot directly contribute to fine- and/or high-resolution building extraction. In this paper, based on image super-resolution and segmentation techniques, we propose a two-stage framework (SRBuildingSeg) for achieving super-resolution (SR) building extraction using relatively low-resolution remotely sensed images. SRBuildingSeg can fully utilize inherent information from the given low-resolution images to achieve high-resolution building extraction. In contrast to the existing building extraction methods, we first utilize an internal pairs generation module (IPG) to obtain SR training datasets from the given low-resolution images and an edge-aware super-resolution module (EASR) to improve the perceptional features, following the dual-encoder building segmentation module (DES). Both qualitative and quantitative experimental results demonstrate that our proposed approach is capable of achieving high-resolution (e.g., 0.5 m) building extraction results at 2×, 4× and 8× SR. Our approach outperforms eight other methods with respect to the extraction result of mean Intersection over Union (mIoU) values by a ratio of 9.38%, 8.20%, and 7.89% with SR ratio factors of 2, 4, and 8, respectively. The results indicate that the edges and borders reconstructed in super-resolved images serve a pivotal role in subsequent building extraction and reveal the potential of the proposed approach to achieve super-resolution building extraction.

Details

Title
Making Low-Resolution Satellite Images Reborn: A Deep Learning Approach for Super-Resolution Building Extraction
Author
Zhang, Lixian 1   VIAFID ORCID Logo  ; Dong, Runmin 1 ; Yuan, Shuai 2 ; Li, Weijia 3 ; Zheng, Juepeng 1   VIAFID ORCID Logo  ; Fu, Haohuan 1 

 Department of Earth System Science, Tsinghua University, Beijing 100084, China; [email protected] (L.Z.); [email protected] (R.D.); [email protected] (J.Z.) 
 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; [email protected] 
 CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong, Hong Kong, China; [email protected] 
First page
2872
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558906129
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.