Abstract

The development in Information and Communication Technology has led to the evolution of new computing and communication environment. Technological revolution with Internet of Things (IoTs) has developed various applications in almost all domains from health care, education to entertainment with sensors and smart devices. One of the subsets of IoT is Internet of Medical things (IoMT) which connects medical devices, hardware and software applications through internet. IoMT enables secure wireless communication over the Internet to allow efficient analysis of medical data. With these smart advancements and exploitation of smart IoT devices in health care technology there increases threat and malware attacks during transmission of highly confidential medical data. This work proposes a scheme by integrating machine learning approach and block chain technology to detect malware during data transmission in IoMT. The proposed Machine Learning based Block Chain Technology malware detection scheme (MLBCT-Mdetect) is implemented in three steps namely: feature extraction, Classification and blockchain. Feature extraction is performed by calculating the weight of each feature and reduces the features with less weight. Support Vector Machine classifier is employed in the second step to classify the malware and benign nodes. Furthermore, third step uses blockchain to store details of the selected features which eventually improves the detection of malware with significant improvement in speed and accuracy. ML-BCT-Mdetect achieves higher accuracy with low false positive rate and higher True positive rate.

Details

Title
Malware Detection Using Decision Tree Based SVM Classifier for IoT
Author
Anwer Mustafa Hilal; Siwar Ben Haj Hassine; Larabi-Marie-Sainte, Souad; Nemri, Nadhem; Nour, Mohamed K; Abdelwahed Motwakel; Abu Sarwar Zamani; Mesfer Al Duhayyim
Pages
713-726
Section
ARTICLE
Publication year
2022
Publication date
2022
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2691783009
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.