Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we propose a visual marker-aided LiDAR/IMU/encoder integrated odometry, Marked-LIEO, to achieve pose estimation of mobile robots in an indoor long corridor environment. In the first stage, we design the pre-integration model of encoder and IMU respectively to realize the pose estimation combined with the pose estimation from the second stage providing prediction for the LiDAR odometry. In the second stage, we design low-frequency visual marker odometry, which is optimized jointly with LiDAR odometry to obtain the final pose estimation. In view of the wheel slipping and LiDAR degradation problems, we design an algorithm that can make the optimization weight of encoder odometry and LiDAR odometry adjust adaptively according to yaw angle and LiDAR degradation distance respectively. Finally, we realize the multi-sensor fusion localization through joint optimization of an encoder, IMU, LiDAR, and camera measurement information. Aiming at the problems of GNSS information loss and LiDAR degradation in indoor corridor environment, this method introduces the state prediction information of encoder and IMU and the absolute observation information of visual marker to achieve the accurate pose of indoor corridor environment, which has been verified by experiments in Gazebo simulation environment and real environment.

Details

Title
Marked-LIEO: Visual Marker-Aided LiDAR/IMU/Encoder Integrated Odometry
Author
Chen, Baifan 1   VIAFID ORCID Logo  ; Zhao, Haowu 1 ; Zhu, Ruyi 1 ; Hu, Yemin 2 

 School of Automation, Central South University, Changsha 410017, China; [email protected] (B.C.); [email protected] (H.Z.); [email protected] (R.Z.) 
 School of Resources and Safety Engineering, Central South University, Changsha 410017, China 
First page
4749
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686096012
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.