Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The field of Neural Style Transfer (NST) has led to interesting applications that enable us to transform reality as human beings perceive it. Particularly, NST for material translation aims to transform the material of an object into that of a target material from a reference image. Since the target material (style) usually comes from a different object, the quality of the synthesized result totally depends on the reference image. In this paper, we propose a material translation method based on NST with automatic style image retrieval. The proposed CNN-feature-based image retrieval aims to find the ideal reference image that best translates the material of an object. An ideal reference image must share semantic information with the original object while containing distinctive characteristics of the desired material (style). Thus, we refine the search by selecting the most-discriminative images from the target material, while focusing on object semantics by removing its style information. To translate materials to object regions, we combine a real-time material segmentation method with NST. In this way, the material of the retrieved style image is transferred to the segmented areas only. We evaluate our proposal with different state-of-the-art NST methods, including conventional and recently proposed approaches. Furthermore, with a human perceptual study applied to 100 participants, we demonstrate that synthesized images of stone, wood, and metal can be perceived as real and even chosen over legitimate photographs of such materials.

Details

Title
Material Translation Based on Neural Style Transfer with Ideal Style Image Retrieval
Author
Benitez-Garcia, Gibran 1   VIAFID ORCID Logo  ; Takahashi, Hiroki 2 ; Yanai, Keiji 1 

 Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi 182-8585, Japan 
 Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi 182-8585, Japan; Artificial Intelligence eXploration Research Center, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi 182-8585, Japan 
First page
7317
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724305153
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.