Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes and evaluates the behavior of a new health indicator to estimate the capacity fade of lithium-ion batteries and their state of health (SOH). This health indicator is advantageous because it does not require the acquisition of data from full charge–discharge cycles, since it is calculated within a narrow SOC interval where the voltage vs. SOC relationship is very linear and that is within the usual transit range for most practical charge and discharge cycles. As a result, only a small fraction of the data points of a full charge–discharge cycle are required, reducing storage and computational resources while providing accurate results. Finally, by using the battery model defined by the Nernst equation, the behavior of future charge–discharge cycles can be accurately predicted, as shown by the results presented in this paper. The proposed approach requires the application of appropriate signal processing techniques, from discrete wavelet filtering to prediction methods based on linear fitting and autoregressive integrated moving average algorithms.

Details

Title
Mathematical Modeling of Battery Degradation Based on Direct Measurements and Signal Processing Methods
Author
de la Vega, Joaquín 1 ; Jordi-Roger Riba 2   VIAFID ORCID Logo  ; Ortega-Redondo, Juan Antonio 1   VIAFID ORCID Logo 

 Electronics Engineering Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; [email protected] (J.d.l.V.); [email protected] (J.A.O.-R.) 
 Electrical Engineering Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain 
First page
4938
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806476984
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.