Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pinus densiflora is an important evergreen coniferous species with both economic and ecological value. It is an endemic species in East Asia. Global climate warming greatly interferes with species survival. This study explored the impact of climate change on the distribution of this species and the relationship between its geographical distribution and climate demand, so as to provide a theoretical basis for the protection of P. densiflora under the background of global warming. This research used 565 valid data points and 19 typical climatic environmental factors distributed in China, Japan, and South Korea. The potential distribution area of P. densiflora in East Asia under the last glacial maximum (LGM), mid-Holocene, the current situation and two scenarios (RCP 2.6 and RCP 8.5) in the future (2050s and 2070s) was simulated by the MaxEnt model. The species distribution model toolbox in ArcGIS software was used to analyze the potential distribution range and change of P. densiflora. The contribution rates, jackknife test and environmental variable response curves were used to assess the importance of key climate factors. The area under the receiver-operating characteristic curve (AUC) was used to evaluate model accuracy. The MaxEnt model had an excellent simulation effect (AUC = 0.982). The forecast showed that the Korean Peninsula and Japan were highly suitable areas for P. densiflora, and the area had little change. Moreover, during the LGM, there was no large-scale retreat to the south, and it was likely to survive in situ in mountain shelters. The results suggested that Japan may be the origin of P. densiflora rather than the Shandong Peninsula of China. The distribution area of P. densiflora in the mid-Holocene and future scenarios was reduced compared with the current distribution, and the reduction of future distribution was greater, indicating that climate warming will have certain negative impacts on the distribution of P. densiflora in the future. The precipitation of the warmest quarter (Bio18), temperature seasonality (Bio4), mean annual temperature (Bio1) and mean temperature of the wettest quarter (Bio8) had the greatest impact on the distribution area of P. densiflora.

Details

Title
MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora
Author
Duan, Xiangguang; Li, Junqing; Wu, Shuhong
First page
402
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642402346
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.