Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A key research problem in the field of ship emissions is how to perform efficient, accurate, and timely measurements of pollutant gases in a ship’s plume. To address this, we have designed and implemented an unmanned aerial system (UAS) that consists of a rotary unmanned aerial vehicle (UAV), a lightweight pod for exhaust monitoring, and a mobile control terminal. The UAV carries the pod and a camera and can fly into a plume at close range. The pod is equipped with a gas acquisition module, SO2 and NO2 sensors, and communication modules to measure the gases in real time. The mobile control terminal is convenient for operators and receives real-time video and measured gas concentrations. We measured SO2 and NO2 in six ship plumes in 2018 to verify the effectiveness and accuracy of the UAS. The SO2/NO2 ratios in high-sulfur fuel were significantly higher than of those in low-sulfur fuel and can thus be used for distinguishing the sulfur content of ship fuel. In comparison to land-based and airborne-based measurements, we conclude that the UAS provides an active, close-range, low-cost, and accurate measurement approach for monitoring ship emissions in real time.

Details

Title
Measurement of SO2 and NO2 in Ship Plumes Using Rotary Unmanned Aerial System
Author
Zhou, Fan 1   VIAFID ORCID Logo  ; Gu, Jing 1 ; Chen, Wei 2 ; Ni, Xunpeng 2 

 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China 
 Pudong Maritime Safety Administration of the People’s Republic of China, Shanghai 200137, China 
First page
657
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546895036
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.