Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The porosity of porous materials is a critical quality attribute of many products ranging from catalysis and separation technologies to porous paper and pharmaceutical tablets. The open porosity in particular, which reflects the pore space accessible from the surface, is crucial for applications where a fluid needs to access the pores in order to fulfil the functionality of the product. This study presents a methodology that uses terahertz time-domain spectroscopy (THz-TDS) coupled with an index-matching medium to measure the open porosity and analyze scattering losses of powder compacts. The open porosity can be evaluated without the knowledge of the refractive index of the fully dense material. This method is demonstrated for pellets compressed of pharmaceutical-grade lactose powder. Powder was compressed at four different pressures and measured by THz-TDS before and after they were soaked in an index-matching medium, i.e., paraffin. Determining the change in refractive index of the dry and soaked samples enabled the calculation of the open porosity. The results reveal that the open porosity is consistently lower than the total porosity and it decreases with increasing compression pressure. The scattering losses reduce significantly for the soaked samples and the scattering centers (particle and/or pore sizes) are of the order of or somewhat smaller than the terahertz wavelength. This new method facilitates the development of a better understanding of the links between material properties (particles size), pellet properties (open porosity) and performance-related properties, e.g., disintegration and dissolution performance of pharmaceutical tablets.

Details

Title
Measuring Open Porosity of Porous Materials Using THz-TDS and an Index-Matching Medium
Author
Naftaly, Mira  VIAFID ORCID Logo  ; Tikhomirov, Iliya; Hou, Peter  VIAFID ORCID Logo  ; Markl, Daniel
First page
3120
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2409476010
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.