It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We investigated the effect of starch modification on the mechanical properties of phenolic epoxy resin (EP). Corn starch admixture of 2.5, 5, 7.5, and 10 wt% were added into the EP. The tensile strength, elongation at break, and elastic modulus of different corn starch contents were compared. The containing of corn starch showed a positive effect on the toughness of the epoxy but showed little effect on strength when the additive content was less than 10 wt%. The strength and elastic modulus increased first and then decreased with the increase in starch content and reached their maximum values at a content of 2.5 wt%. The enhancement effect might be due to corn starch’s mechanical properties, dispersibility, and interfacial interaction. With the increase in starch content, starch granules quickly contact each other, causing self-aggregation sedimentation and a decrease in strength and elastic modulus. The scanning electron micrographs of the toughened EP specimens showed ductile failure because of the starch particles. The surface morphology of the blend resin specimens was full of staggered and stepped cracks caused by the shearing damage, which is shown by obvious plastic fracture characteristics with plastic deformation ability. The initiation of micro-cracks in the EP matrix was induced by the incorporation of starch particles, which caused localized stepped shear damage in the matrix. More energy would be absorbed during this process, and the toughness of the EP would be enhanced. It is recommended that the best corn starch content should be 2.5 wt% to obtain excellent strength and good toughness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China