Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mechanical properties, including the fatigue behavior of metals, are usually determined from damage-free specimens, but it is not well known how these properties change with respect to prior damages; hence, the present work aims to understand the remaining mechanical properties of low carbon alloy steel Q345q with pre-damages. Low-cycle fatigue tests on the damage free specimens, tensile tests on the low-cycle fatigue damaged specimens, and fatigue tests on the plastic deformed specimens were carried out, respectively. The low-cycle fatigue life prediction formula was proposed. The influences of different kinds of pre-damages on the residual mechanical properties were analyzed. Results show that the stable hysteretic loops in the low-cycle fatigue tests are well-stacked. The material illustrates Masing behavior, and it has a good energy dissipation capacity. The ductility of the low-cycle fatigue-damaged materials decreases significantly in comparison with the undamaged ones. The low-cycle fatigue lives of Q345q steel are almost unaffected, so long as the pre-applied tensile strain is lower than 10%.

Details

Title
Mechanical Properties of Low Carbon Alloy Steel with Consideration of Prior Fatigue and Plastic Damages
Author
Liu, Qing 1 ; Tang, Zhanzhan 1   VIAFID ORCID Logo  ; Yang, Xuan 1 ; He, Zhixiang 1 ; Xue, Hanyang 1 ; Zhuge, Hanqing 2 

 College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China; [email protected] (Q.L.); [email protected] (X.Y.); [email protected] (Z.H.); [email protected] (H.X.) 
 College of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, China; [email protected] 
First page
967
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693965940
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.