Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Stellaria Radix, called Yinchaihu in Chinese, is a traditional Chinese medicine, which is obtained from the dried roots of Stellaria dichotoma L. var. lanceolata Bge. Cultivated yinchaihu (YCH) has become a main source of production to alleviate the shortage of wild plant resources, but it is not clear whether the metabolites of YCH change with the mode of production. In this study, the contents of methanol extracts, total sterols and total flavonoids in wild and cultivated YCH are compared. The metabolites were analyzed by ultra-high performance liquid chromatography–tandem time-of-flight mass spectrometry. The content of methanol extracts of the wild and cultivated YCH all exceeded the standard content of the Chinese Pharmacopoeia. However, the contents of total sterols and total flavonoids in the wild YCH were significantly higher than those in the cultivated YCH. In total, 1586 metabolites were identified by mass spectrometry, and 97 were significantly different between the wild and cultivated sources, including β-sitosterol, quercetin derivatives as well as many newly discovered potential active components, such as trigonelline, arctiin and loganic acid. The results confirm that there is a rich diversity of metabolites in the wild and cultivated YCH, and provide a useful theoretical guidance for the evaluation of quality in the production of YCH.

Details

Title
Metabolomic Analysis Reveals the Metabolic Diversity of Wild and Cultivated Stellaria Radix (Stellaria dichotoma L. var. lanceolata Bge.)
Author
Li, Zhenkai 1 ; Wang, Hong 1 ; Lu, Feng 1 ; Li, Haishan 1 ; Li, Yanqing 1 ; Tian, Gege 1 ; Niu, Pilian 1 ; Yang, Yan 1 ; Li, Peng 2 

 School of Life Sciences, Ningxia University, Yinchuan 750021, China 
 School of Life Sciences, Ningxia University, Yinchuan 750021, China; Ningxia Natural Medicine Engineering Technology Research Center, Yinchuan 750021, China 
First page
775
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779673381
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.