Full Text

Turn on search term navigation

Copyright © 2020 Hoang Vinh Tran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

A metal-organic framework MIL-53(Fe) was successfully synthesized by a simple hydrothermal method. A synthesized MIL-53(Fe) sample was characterized, and results indicated that the formed MIL-53(Fe) was a single phase with small particle size of 0.8 μm and homogeneous particle size distribution was obtained. The synthesized MIL-53(Fe) has been used to modify a glassy carbon electrode (GCE) by a drop-casting technique. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements of the MIL-53(Fe)-modified GCE showed that the MIL-53(Fe) was successfully immobilized onto the GCE electrode surface and the electrochemical behavior of the GCE/MIL-53(Fe) electrode was stable. In addition, several electrochemical parameters of MIL-53(Fe)-modified GCE (GCE/MIL-53(Fe)) including the heterogeneous standard rate constant (k0) and the electrochemically effective surface area (A) were calculated. Obtained results demonstrated that the synthesized MIL-53(Fe) with the small particle size, highly homogeneous particle size, and high electrochemically effective surface area was able to significantly enhance the electrochemical response signal of the working electrode. Therefore, the GCE/MIL-53(Fe) electrode has been used as a highly sensitive electrochemical sensor for cadmium ion (Cd(II)) monitoring in aqueous solution using differential pulse voltammetry (DPV) technique. The response signal of the electrochemical sensor increased linearly in the Cd(II) ion concentration range from 150 nM to 450 nM with the limit of detection (LOD) of 16 nM.

Details

Title
Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium Ions in Aqueous Solutions
Author
Tran, Hoang Vinh 1   VIAFID ORCID Logo  ; Hue Thi Minh Dang 1   VIAFID ORCID Logo  ; Luyen Thi Tran 1   VIAFID ORCID Logo  ; Chau Van Tran 1 ; Chinh Dang Huynh 1 

 School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi 100000, Vietnam 
Editor
Sagar Roy
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
0730-6679
e-ISSN
1098-2329
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2451757490
Copyright
Copyright © 2020 Hoang Vinh Tran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/