Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plasmonic metal nanoparticle (NP)-decorated thin films of biobased and biocompatible polymers provide significant opportunities in various biomedical applications. Inspired from the adhesive proteins of the marine mussels, polydopamine (PDA) serves as a versatile, biocompatible, and simple thin-film material and enhances cell growth and proliferation. Herein, we report the fabrication of the gold NPs (AuNPs) or silver NPs (AgNPs)-deposited thin films of PDA and their employment in cell growth and proliferation. PDA thin film with its numerous functional groups enabled well-controlled adsorption of NPs. The number density of NPs was manipulated simply by tuning the deposition time. Cell viability test for human lung cancer (A549) and human colon cancer (CaCO2) cell lines indicated that a thin layer of PDA film remarkably enhanced the cell growth and proliferation. The lower number density of NPs for the 24 h of the culture time resulted in a higher proliferation rate. However, the increase in both the number density of NPs and culture time led to a decrease in cell growth.

Details

Title
Metallic Nanoparticle-Decorated Polydopamine Thin Films and Their Cell Proliferation Characteristics
Author
Ferhunde Aysin; Yilmaz, Asli; Yilmaz, Mehmet  VIAFID ORCID Logo 
First page
802
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436576469
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.