Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seamount cobalt-rich crusts are rich in cobalt resources and are sought after worldwide. Among different affecting parameters, crust thickness is the most important in evaluating cobalt-rich crust resources in seamounts. Generally, there are two challenges to crust thickness evaluation: firstly, due to high operating costs, most geological stations for seamount exploration have sparse sampling distributions so there are insufficient data to estimate the crust thickness distribution; secondly, a single evaluation method has advantages and disadvantages, and it is not feasible to benefit from the advantages only. These methods cannot simultaneously make full use of the sampling data in local areas, providing a more appropriate evaluation of the whole area. As a result, the estimated results cannot fully reflect the thickness distribution. Based on the thickness data of the station survey and topographic data, geostatistical units are divided, and a comprehensive crust thickness assessment scheme is established on the ArcGIS platform. To this end, the adjacent area method is applied to calculate the crust thickness within the influence range of the station. Combined with the station buffer radius and Thiessen polygon method, the crust thickness within 1.5 km of the survey station was estimated. Then the “slope–distance” Kriging interpolation method was used to calculate the crust thickness in the study area, and the crust thickness in the optimal effective radius area was given to compensate for the missing part in the first step. Finally, the geological blocks were divided using the topographic classification method, and the crust thickness of the remaining unassigned regions was estimated using the mathematical expectation method. The proposed method was applied to evaluate the Il’ichev Guyot’s crust thickness and reasonable results were achieved. It was found that the thickness estimation of the area near the station is consistent with the measured values. Since finer topographic data are used in the calculation, the thickness estimation result is more detailed. In this regard, a simple and effective calculation method was established on the ArcMap platform. The mathematical expectation estimation method of the crust thickness, based on the topographic and geomorphological classification from the perspective of the mineralization mechanism, compensates for the drawbacks of the first two methods originating from the lack of data points. The results show that the proposed method is an appropriate scheme to evaluate seamount crust thickness without comprehensive investigation.

Details

Title
A Method for Assessing the Thickness of Cobalt-Rich Crust on Seamounts and Its Application on the Il’ichev Guyot
Author
Shijuan Yan 1 ; Shi, Xinyu 2 ; Yang, Gang 3 ; Du, Dewen 1   VIAFID ORCID Logo  ; Liu, Yonggang 4 ; Ye, Jun 1 ; Ren, Xiangwen 1 ; Zhu, Zhiwei 3 ; Yue Hao 2 

 Laboratory of Marine Geology and Geophysics, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 
 Laboratory of Marine Geology and Geophysics, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China 
 Laboratory of Marine Geology and Geophysics, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, Qingdao 266061, China 
 Key Laboratory of Marine Mineral Resources of Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 511458, China 
First page
1538
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756758976
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.