Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Permian igneous rock in Shunbei Oilfield exhibits high rock strength, which results in a low rate of penetration (ROP) and shortens the cutter’s service life. It is necessary to analyze and evaluate the rock breaking effect of cutters. However, at this stage, the evaluation of the rock breaking effect has been limited to comparing the sizes of the mechanical specific energy (MSE), and the change in the rock breaking efficiency caused by the difference in the shape of the cutters’ surface has not been considered. Therefore, through the establishment of numerical simulation models of a circular cutter, bevel cutter, axe cutter, wedge cutter, and triangular cutter, the evaluation of the rock breaking efficiency of special-shaped cutters was completed. The results show that the triangular cutter and the wedge cutter are suitable for the front row cutter of the polycrystalline diamond compact bit (PDC); the triangular cutter is suitable for drilling into medium–hard formations, the wedge cutter is suitable for drilling into hard formations, and the bevel cutter is suitable for the back row cutter of the PDC, to assist other cutters in the process of rock breaking. The research results can provide the basis for the selection of PDC bit cutters and the design optimization of the bit.

Details

Title
A Method for Evaluating the Rock Breaking Efficiency of Cutters and Optimizing the PDC Cutter Profile—A Study of Igneous Rock Formations in Shunbei Oilfield
Author
Dong, Zhuoxin 1   VIAFID ORCID Logo  ; Zhang, Hui 1 ; Li, Jun 1 ; Zhang, Kuangsheng 2 ; Ou, Yangyong 2 ; Lu, Zongyu 3 ; Shi, Jiangang 3 

 College of Petroleum Engineering, China University of Petroleum, Beijing 100100, China 
 Oil & Gas Technology Research Institue of PetroChina Changqing Oilfield Company, Beijing 100085, China 
 PetroChina Xinjiang Oilfield Company, Karamay 834002, China 
First page
6686
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716529272
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.