Full Text

Turn on search term navigation

© 2023 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objectives

There is previously reported a large variety of criterion measures and reference systems applied to validate position tracking systems in sports. This study aims to investigate the effect of different criterion measures and reference systems on the outcome of accuracy assessments of tracking systems in sports.

Methods

Data from a commercially available standalone global navigation satellite system (GNSS) were compared with two different reference systems: a high-end differential GNSS and a tape measure. Differences in accuracy outcomes of position (static and dynamic), distance and speed (mean and instantaneous) were investigated in team sport imitation courses.

Results

The mean horizontal position error was larger when athletes were in motion (dynamic position; 1.53±0.82 m) compared with static measurements (1.10±0.60 m). Measured distances of the courses were markedly different (+6% to −17%) between the two reference systems, causing differences in error. Differences in error were also found between mean speed and instantaneous speed (0.10 vs 0.28 m). Errors in mean speed were highly affected by the time over which speed was averaged.

Conclusion

Choice of criterion measure and reference system has a substantial impact on the accuracy assessments of tracking systems. Specifically, assessing static position is not a substitute for dynamic position, and mean speed is not a substitute for instantaneous speed. Therefore, the outcomes of validation studies should always be interpreted in light of the reference methods that were used.

Details

Title
Methods to assess validity of positioning systems in team sports: can we do better?
Author
Live Steinnes Luteberget 1   VIAFID ORCID Logo  ; Jølstad, Petter A H 1 ; Gilgien, Matthias 2 

 Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway 
 Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway; Center of Alpine Sports Biomechanics, Engadin Health and Innovation Foundation, Samedan, Switzerland 
First page
e001496
Section
Original research
Publication year
2023
Publication date
2023
Publisher
BMJ Publishing Group LTD
e-ISSN
20557647
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2766468464
Copyright
© 2023 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.