Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper presents and discusses modern methods and technologies of CO2 capture (pre-combustion capture, post-combustion capture, and oxy-combustion capture) along with the principles of these methods and examples of existing and operating installations. The primary differences of the selected methods and technologies, with the possibility to apply them in new low-emission energy technologies, were presented. The following CO2 capture methods: pre-combustion, post-combustion based on chemical absorption, physical separation, membrane separation, chemical looping combustion, calcium looping process, and oxy-combustion are discussed in the paper. Large-scale carbon capture utilization and storage (CCUS) facilities operating and under development are summarized. In 2021, 27 commercial CCUS facilities are currently under operation with a capture capacity of up to 40 Mt of CO2 per year. If all projects are launched, the global CO2 capture potential can be more than ca. 130–150 Mt/year of captured CO2. The most popular and developed indicators for comparing and assessing CO2 emission, capture, avoiding, and cost connected with avoiding CO2 emissions are also presented and described in the paper.

Details

Title
Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies
Author
Madejski, Paweł  VIAFID ORCID Logo  ; Chmiel, Karolina; Subramanian, Navaneethan; Kuś, Tomasz
First page
887
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627559333
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.