Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the low detection accuracy and poor positioning for small objects of single-stage object detection algorithms, we improve the backbone network of SSD (Single Shot MultiBox Detector) and present an improved SSD model based on multi-scale feature fusion and attention mechanism module in this paper. Firstly, we enhance the feature extraction ability of the shallow network through the feature fusion method that is beneficial to small object recognition. Secondly, the RFB (Receptive Field block) is used to expand the object’s receptive field and extract richer semantic information. After feature fusion, the attention mechanism module is added to enhance the feature information of important objects and suppress irrelevant other information. The experimental results show that our algorithm achieves 80.7% and 51.8% mAP on the PASCAL VOC 2007 classic dataset and MS COCO 2017 dataset, which are 3.2% and 10.6% higher than the original SSD algorithm. Our algorithm greatly improves the accuracy of object detection and meets the requirements of real-time.

Details

Title
MFFAMM: A Small Object Detection with Multi-Scale Feature Fusion and Attention Mechanism Module
Author
Qu, Zhong 1   VIAFID ORCID Logo  ; Han, Tongqiang 1 ; Tuming Yi 2 

 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 
 Institute of Information Technology Southwest Computer Co., Ltd., Chongqing 400065, China 
First page
8940
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716492439
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.